Discrete & Computational Geometry

, Volume 39, Issue 1–3, pp 239–272 | Cite as

Empty Convex Hexagons in Planar Point Sets

  • Tobias Gerken


Erdős asked whether every sufficiently large set of points in general position in the plane contains six points that form a convex hexagon without any points from the set in its interior. Such a configuration is called an empty convex hexagon. In this paper, we answer the question in the affirmative. We show that every set that contains the vertex set of a convex 9-gon also contains an empty convex hexagon.


Erdős-Szekeres problem Ramsey theory Convex polygons and polyhedra Empty hexagon problem 


  1. 1.
    Bárány, I., Károlyi, Gy.: Problems and results around the Erdős-Szekeres convex polygon theorem. In: Discrete and Computational Geometry, Tokyo, 2000. Lect. Notes Comput. Sci., vol. 2098. Springer, Berlin (2001) CrossRefGoogle Scholar
  2. 2.
    Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005) zbMATHGoogle Scholar
  3. 3.
    Erdős, P.: Some more problems on elementary geometry. Aust. Math. Soc. Gaz. 5, 52–54 (1978) Google Scholar
  4. 4.
    Erdős, P.: Some applications of graph theory and combinatorial methods to number theory and geometry. In: Algebraic Methods in Graph Theory, vols. I, II, Szeged, 1978. Colloq. Math. Soc. János Bolyai, vol. 25, pp. 137–148. North-Holland, Amsterdam (1981) Google Scholar
  5. 5.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935) Google Scholar
  6. 6.
    Erdős, P., Szekeres, G.: On some extremum problems in elementary geometry. Ann. Univ. Sci. Bp. Eötvös Sect. Math. 3–4, 53–62 (1960/1961) Google Scholar
  7. 7.
    Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elem. Math. 33, 116–118 (1978) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Horton, J.D.: Sets with no empty convex 7-gons. Can. Math. Bull. 26, 482–484 (1983) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Morris, W., Soltan, V.: The Erdős-Szekeres problem on points in convex position—a survey. Bull. Am. Math. Soc. 37, 437–458 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Overmars, M.: Finding sets of points without empty convex 6-gons. Discrete Comput. Geom. 29, 153–158 (2003) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Tóth, G., Valtr, P.: The Erdős-Szekeres theorem: upper bounds and related results. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry. MSRI Publications, vol. 52, pp. 557–568. Cambridge University Press, Cambridge (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Zentrum MathematikTechnische Universität MünchenGarchingGermany

Personalised recommendations