Advertisement

Discrete & Computational Geometry

, Volume 38, Issue 4, pp 740–756 | Cite as

A Discrete Laplace–Beltrami Operator for Simplicial Surfaces

  • Alexander I. Bobenko
  • Boris A. Springborn
Article

Abstract

We define a discrete Laplace–Beltrami operator for simplicial surfaces (Definition 16). It depends only on the intrinsic geometry of the surface and its edge weights are positive. Our Laplace operator is similar to the well known finite-elements Laplacian (the so called “cotan formula”) except that it is based on the intrinsic Delaunay triangulation of the simplicial surface. This leads to new definitions of discrete harmonic functions, discrete mean curvature, and discrete minimal surfaces. The definition of the discrete Laplace–Beltrami operator depends on the existence and uniqueness of Delaunay tessellations in piecewise flat surfaces. While the existence is known, we prove the uniqueness. Using Rippa’s Theorem we show that, as claimed, Musin’s harmonic index provides an optimality criterion for Delaunay triangulations, and this can be used to prove that the edge flipping algorithm terminates also in the setting of piecewise flat surfaces.

Keywords

Laplace operator Delaunay triangulation Dirichlet energy Simplicial surfaces Discrete differential geometry 

References

  1. 1.
    Alexandrov, A.D.: Convex Polyhedra. Springer Monographs in Mathematics. Springer, Berlin (2005). English translation with additional material of the 1950 Russian monograph. zbMATHGoogle Scholar
  2. 2.
    Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 201–290. North-Holland, Amsterdam (2000) Google Scholar
  3. 3.
    Bobenko, A.I., Hoffmann, T., Springborn, B.A.: Minimal surfaces from circle patterns: Geometry from combinatorics. Ann. Math. 164, 231–264 (2006) zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Botsch, M., Kobbelt, L.: An intuitive framework for real time freeform modeling. ACM Trans. Graph. 23(3), 630–634 (2004) CrossRefGoogle Scholar
  5. 5.
    Delaunay, B.N.: Sur la sphère vide. Izv. Akad. Nauk SSSR, Otd. Mat. Estestv. Nauk 7, 793–800 (1934) Google Scholar
  6. 6.
    Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21, 209–218 (2002) CrossRefGoogle Scholar
  7. 7.
    Duffin, R.J.: Distributed and lumped networks. J. Math. Mech. 8(5), 793–826 (1959) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Duffin, R.J.: Potential theory on a rhombic lattice. J. Comb. Theory 5, 258–272 (1968) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, pp. 142–155. Springer, Berlin (1988) CrossRefGoogle Scholar
  10. 10.
    Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2001) zbMATHGoogle Scholar
  11. 11.
    Indermitte, C., Liebling, Th.M., Troyanov, M., Clemençon, H.: Voronoi diagrams on piecewise flat surfaces and an application to biological growth. Theor. Comput. Sci. 263, 263–274 (2001) zbMATHCrossRefGoogle Scholar
  12. 12.
    Lambert, T.: The Delaunay triangulation maximizes the mean inradius. In: Proceedings of the 6th Canadian Conference on Computational Geometry (CCCG’94), pp. 201–206 (1994) Google Scholar
  13. 13.
    Leibon, G., Letscher, D.: Delaunay triangulations and Voronoi diagrams for Riemannian manifolds. In: Proceedings of the Sixteenth Annual Symposium on Computational Geometry, Hong Kong, 2000, pp. 341–349. ACM, New York (2000) CrossRefGoogle Scholar
  14. 14.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003) Google Scholar
  15. 15.
    Mercat, C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218, 177–216 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Musin, O.: Properties of the Delaunay triangulation. In: Proceedings of the 13th Annual Symposium on Computational Geometry (SCG ’97), pp. 424–426. ACM, New York (1997) CrossRefGoogle Scholar
  17. 17.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Rippa, S.: Minimal roughness property of the Delaunay triangulation. Comput. Aided Geom. Des. 7, 489–497 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Rivin, I.: Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. Math. 139, 553–580 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Troyanov, M.: Les surface Euclidiennes à singularités coniques. Enseign. Math. 32, 79–94 (1986) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations