Discrete & Computational Geometry

, Volume 29, Issue 1, pp 77–81

A Lower Bound on the Distortion of Embedding Planar Metrics into Euclidean Space

  • Ilan Newman
  • Yuri Rabinovich

Abstract.

We exhibit a simple infinite family of series-parallel graphs that cannot be metrically embedded into Euclidean space with distortion smaller than
$$\Omega(\sqrt{\log n})$$
. This matches Rao's [14] general upper bound for metric embedding of planar graphs into Euclidean space, thus resolving the question how well do planar metrics embed in Euclidean spaces?

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© 2002 Springer-Verlag New York Inc.

Authors and Affiliations

  • Ilan Newman
    • 1
  • Yuri Rabinovich
    • 1
  1. 1.Computer Science Department, University of Haifa, Haifa 31905, Israel ilan@cs.haifa.ac.il, yuri@cs.haifa.ac.ilIL

Personalised recommendations