Advertisement

Algorithmica

pp 1–28 | Cite as

On the Relation of Strong Triadic Closure and Cluster Deletion

  • Niels GrüttemeierEmail author
  • Christian Komusiewicz
Article

Abstract

We study the parameterized and classical complexity of two problems that are concerned with induced paths on three vertices, called \(P_3\)s, in undirected graphs \(G=(V,E)\). In Strong Triadic Closure we aim to label the edges in E as strong and weak such that at most k edges are weak and G contains no induced \(P_3\) with two strong edges. In Cluster Deletion we aim to destroy all induced \(P_3\)s by a minimum number of edge deletions. We first show that Strong Triadic Closure admits a 4k-vertex kernel. Then, we study parameterization by \(\ell :=|E|-k\) and show that both problems are fixed-parameter tractable and unlikely to admit a polynomial kernel with respect to \(\ell \). Finally, we give a dichotomy of the classical complexity of both problems on H-free graphs for all H of order at most four.

Keywords

Social networks Fixed-parameter algorithms Kernelization Graph classes 

Notes

References

  1. 1.
    Böcker, S., Damaschke, P.: Even faster parameterized cluster deletion and cluster editing. Inf. Process. Lett. 111(14), 717–721 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, vol. 3. SIAM, New Delhi (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bulteau, L., Grüttemeier, N., Komusiewicz, C., Sorge, M.: Your rugby mates don’t need to know your colleagues: triadic closure with edge colors. In: Proceedings of the 11th International Conference on Algorithms and Complexity (CIAC’19). Lecture Notes in Computer Science, vol. 11485, pp. 99–111. Springer, Berlin (2019)Google Scholar
  6. 6.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gao, Y., Hare, D.R., Nastos, J.: The cluster deletion problem for cographs. Discrete Math. 313(23), 2763–2771 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Golovach, P.A., Heggernes, P., Konstantinidis, A.L., Lima, P.T., Papadopoulos, C.: Parameterized aspects of strong subgraph closure. In: Proceedings of the 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT’18). Leibniz International Proceedings in Informatics (LIPIcs), vol. 101, pp. 23:1–23:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)Google Scholar
  10. 10.
    Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973)CrossRefGoogle Scholar
  11. 11.
    Grüttemeier, N., Komusiewicz, C.: On the relation of strong triadic closure and cluster deletion. In: Proceedings of the 44th International Workshop Graph-Theoretic Concepts in Computer Science (WG’18). Lecture Notes in Computer Science, vol. 11159, pp. 239–251. Springer, Berlin (2018)Google Scholar
  12. 12.
    Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8–10), 718–726 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hsu, W.-L., Ma, T.-H.: Substitution decomposition on chordal graphs and applications. In: Proceedings of the 2nd international symposium on algorithms (ISA’91). Lecture Notes in Computer Science, vol. 557, pp. 52–60. Springer, Berlin (1991)Google Scholar
  15. 15.
    Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Appl. Math. 160(15), 2259–2270 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Konstantinidis, A.L., Nikolopoulos, S.D., Papadopoulos, C.: Strong triadic closure in cographs and graphs of low maximum degree. Theor. Comput. Sci. 740, 76–84 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Konstantinidis, A.L., Papadopoulos, C.: Maximizing the strong triadic closure in split graphs and proper interval graphs. In: Proceedings of the 28th International Symposium on Algorithms and Computation (ISAAC’17). Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 92, pp. 53:1–53:12. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  18. 18.
    Le, V.B.: Gallai graphs and anti-gallai graphs. Discrete Math. 159(1–3), 179–189 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Micali, S., Vazirani, V.V.: An \({O(\sqrt{|V|}|E|)}\) algorithm for finding maximum matching in general graphs. In: Proceedings of the 21st Annual Symposium on Foundations of Computer Science (FOCS’80), pp. 17–27. IEEE Computer Society, Washington (1980)Google Scholar
  20. 20.
    Natanzon, A.: Complexity and approximation of some graph modification problems. Master thesis, University of Tel-Aviv (1999)Google Scholar
  21. 21.
    Olariu, S.: Paw-free graphs. Inf. Process. Lett. 28(1), 53–54 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Poljak, S.: A note on stable sets and colorings of graphs. Comment. Math. Univ. Carol. 15(2), 307–309 (1974)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Prisner, E.: Hereditary clique-helly graphs. J. Comb. Math. Comb. Comput. 14, 216–220 (1993)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized cluster editing problems. Theory Comput. Syst. 44(1), 91–104 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rozenshtein, P., Tatti, N., Gionis, A.: Inferring the strength of social ties: a community-driven approach. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’17), pp. 1017–1025. ACM (2017)Google Scholar
  26. 26.
    Sbihi, N.: Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile. Discrete Math. 29(1), 53–76 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sintos, S., Tsaparas, P.: Using strong triadic closure to characterize ties in social networks. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14), pp. 1466–1475. ACM, New York, NY (2014)Google Scholar
  29. 29.
    Sun, L.: Two classes of perfect graphs. J. Comb. Theory Ser. B 53(2), 273–292 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    van Bevern, R., Tsidulko, O.Yu., Zschoche, P.: Fixed-parameter algorithms for maximum-profit facility location under matroid constraints. In: Proceedings of the 11th International Conference on Algorithms and Complexity (CIAC’19), Lecture Notes in Computer Science, vol. 11485, pp. 62–74. Springer, Berlin (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fachbereich für Mathematik und InformatikPhilipps-Universität MarburgMarburgGermany

Personalised recommendations