Advertisement

Algorithmica

pp 1–24 | Cite as

Faster Approximate Diameter and Distance Oracles in Planar Graphs

  • Timothy M. ChanEmail author
  • Dimitrios Skrepetos
Article
  • 4 Downloads

Abstract

We present an \(O\left( n\log ^2{n} +(1/\varepsilon )^5 n\log {n}\right) \)-time algorithm that computes a \((1+\varepsilon )\)-approximation of the diameter of a non-negatively-weighted, undirected planar graph of n vertices. This is an improvement over the algorithm of Weimann and Yuster (ACM Trans Algorithms 12(1):12, 2016) of \(O\left( (1/\varepsilon )^4 n\log ^4{n}+2^{O(1/\varepsilon )}n\right) \) time in two regards. First we eliminate the exponential dependency on \(1/\varepsilon \) by adapting and specializing Cabello’s recent Voronoi-diagram-based technique (Cabello, in: Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017) for approximation purposes. Second we shave off two logarithmic factors by choosing a better sequence of error parameters in the recursion. Moreover, using similar techniques we obtain a variant of Gu and Xu’s \((1+\varepsilon )\)-approximate distance oracle (Gu and Xu, in: Proceedings of the 26th International Symposium on Algorithms and Computation (ISAAC), 2015) with polynomial dependency on \(1/\varepsilon \) in the preprocessing time and space and \(O\left( \log (1/\varepsilon )\right) \) query time.

Keywords

Planar graphs Shortest paths Diameter Distance oracles Approximation algorithms Voronoi diagrams 

Notes

Acknowledgements

We thank the reviewers for their careful reading and comments.

References

  1. 1.
    Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Maintaining information in fully dynamic trees with top trees. ACM Trans. Algorithms 1(2), 243–264 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berman, P., Kasiviswanathan, S.P.: Faster approximation of distances in graphs. In: Proceedings of the 10th International Symposium on Algorithms and Data Structures (WADS), pp. 541–552 (2007)Google Scholar
  3. 3.
    Busch, C., LaFortune, R., Tirthapura, S.: Improved sparse covers for graphs excluding a fixed minor. In: Proceedings of the 26th ACM Symposium on Principles of Distributed Computing (PODC), pp. 61–70 (2007)Google Scholar
  4. 4.
    Cabello, S.: Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs. In: Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2143–2152 (2017)Google Scholar
  5. 5.
    Cabello, S.: Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs. CoRR, (2017) arXiv:1702.07815
  6. 6.
    Chan, T.M.: All-pairs shortest paths for unweighted undirected graphs in \(o(mn)\) time. ACM Trans. Algorithms 8, 1–17 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chan, T.M., Skrepetos, D.: Faster approximate diameter and distance oracles in planar graphs. In: Proceeding of the 25th European Symposium on Algorithms (ESA), pp. 25:1–25:13 (2017)Google Scholar
  8. 8.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput Geom 4(5), 387–421 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3(3), 283–309 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16, 1004–1022 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with fusion trees. J. Comput. Syst. Sci. 47(3), 424–436 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gawrychowski, P., Kaplan, H., Mozes, S., Sharir, M., Weimann, O.: Voronoi diagrams on planar graphs, and computing the diameter in deterministic \({\widetilde{O}}\left(n^{5/3}\right)\) time. In: Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 495–514 (2018)Google Scholar
  15. 15.
    Gawrychowski, P., Mozes, S., Weimann, O., Wulff-Nilsen, C.: Better tradeoffs for exact distance oracles in planar graphs. In: Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 515–529 (2018)Google Scholar
  16. 16.
    Gu, Q.-P., Xu, G.: Constant query time \((1+\varepsilon )\)-approximate distance oracle for planar graphs. In: Proceedings of the 26th International Symposium on Algorithms and Computation (ISAAC), pp. 625–636 (2015). Theoretical Computer Science (to appear) Google Scholar
  17. 17.
    Henzinger, M.R., Philip, K., Satish, R., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55(1), 3–23 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kawarabayashi, K., Klein, P.N., Sommer, C.: Linear-space approximate distance oracles for planar, bounded-genus and minor-free graphs. In: Proceedings of the 38th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 135–146 (2011)Google Scholar
  19. 19.
    Kawarabayashi, K., Sommer, C., Thorup, M.: More compact oracles for approximate distances in undirected planar graphs. In: Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 550–563 (2013)Google Scholar
  20. 20.
    Klein, P.N.: Preprocessing an undirected planar network to enable fast approximate distance queries. In: Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 820–827 (2002)Google Scholar
  21. 21.
    Klein, P.N.: Multiple-source shortest paths in planar graphs. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 146–155 (2005)Google Scholar
  22. 22.
    Klein, R.: Concrete and Abstract Voronoi Diagrams, Volume 400 of Lecture Notes in Computer Science. Springer, New York (1989)CrossRefGoogle Scholar
  23. 23.
    Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Comput. Geom. 3(3), 157–184 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mulmuley, K.: Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, Upper Saddle River (1994)zbMATHGoogle Scholar
  26. 26.
    Schnyder, W: Embedding planar graphs on the grid. In: Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 138–148 (1990)Google Scholar
  27. 27.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. J. ACM 51(6), 993–1024 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Weimann, O., Yuster, R.: Approximating the diameter of planar graphs in near linear time. ACM Trans. Algorithms 12(1), 12 (2016)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Wulff-Nilsen, C.: Algorithms for planar graphs and graphs in metric spaces. Ph.D. thesis, University of Copenhagen (2010)Google Scholar
  31. 31.
    Wulff-Nilsen, C.: Approximate distance oracles for planar graphs with improved query time-space tradeoff. In: Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 351–362 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations