Algorithmica

pp 1–27

# On the Complexity Landscape of Connected f-Factor Problems

• R. Ganian
• N. S. Narayanaswamy
• S. Ordyniak
• C. S. Rahul
• M. S. Ramanujan
Article

## Abstract

Let G be an undirected simple graph having n vertices and let $$f:V(G)\rightarrow \{0,\dots , n-1\}$$ be a function. An f-factor of G is a spanning subgraph H such that $$d_H(v)=f(v)$$ for every vertex $$v\in V(G)$$. The subgraph H is called a connected f-factor if, in addition, H is connected. A classical result of Tutte (Can J Math 6(1954):347–352, 1954) is the polynomial time algorithm to check whether a given graph has a specified f-factor. However, checking for the presence of a connectedf-factor is easily seen to generalize Hamiltonian Cycle and hence is $$\mathsf {NP}$$-complete. In fact, the Connected f-Factor problem remains $$\mathsf {NP}$$-complete even when we restrict f(v) to be at least $$n^{\epsilon }$$ for each vertex v and constant $$0\le \epsilon <1$$; on the other side of the spectrum of nontrivial lower bounds on f, the problem is known to be polynomial time solvable when f(v) is at least $$\frac{n}{3}$$ for every vertex v. In this paper, we extend this line of work and obtain new complexity results based on restrictions on the function f. In particular, we show that when f(v) is restricted to be at least $$\frac{n}{(\log n)^c}$$, the problem can be solved in quasi-polynomial time in general and in randomized polynomial time if $$c\le 1$$. Furthermore, we show that when $$c>1$$, the problem is $$\mathsf {NP}$$-intermediate.

## Keywords

Connected f-factors Quasi-polynomial time algorithms Randomized algorithms $$\mathsf {NP}$$-intermediate Exponential time hypothesis

## Notes

### Acknowledgements

The authors wish to thank the anonymous reviewers for their helpful comments. The authors acknowledge support by the Austrian Science Fund (FWF, Project P26696), and project TOTAL funded by the European Research Coun- cil (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No 677651). Robert Ganian is also affiliated with FI MU, Brno, Czech Republic.

## References

1. 1.
Akiyama, J., Kano, M.: Factors and factorizations of graphsa survey. J. Graph Theory 9(1), 1–42 (1985)
2. 2.
Bellman, R.E.: Dynamic programming treatment of the traveling salesman problem. J. ACM 9, 61–63 (1962)
3. 3.
Cheah, F., Corneil, D.G.: The complexity of regular subgraph recognition. Discrete Appl. Math. 27(1–2), 59–68 (1990)
4. 4.
Chung, F.R.K., Graham, R.L.: Recent results in graph decompositions. Lond. Math. Soc. Lect. Note Ser. 52, 103–123 (1981)
5. 5.
Cornelissen, K., Hoeksma, R., Manthey, B., Narayanaswamy, N.S., Rahul, C.S., Waanders, M.: Approximation algorithms for connected graph factors of minimum weight. Theory Comput. Syst. 62(2), 441–464 (2018)
6. 6.
Cornelissen, K., Hoeksma, R., Manthey, B., Narayanaswamy, N.S., Rahul, C.S.: Approximability of connected factors. In: Kaklamanis, C., Pruhs, K. (eds.) Approximation and Online Algorithms. Lecture Notes in Computer Science, vol. 8447, pp. 120–131. Springer, Berlin (2014)Google Scholar
7. 7.
Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Onufry Wojtaszczyk, J.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22–25, 2011, pp. 150–159. IEEE Computer Society (2011)Google Scholar
8. 8.
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)
9. 9.
Gutin, G.Z., Wahlström, M., Yeo, A.: Rural postman parameterized by the number of components of required edges. J. Comput. Syst. Sci. 83(1), 121–131 (2017)
10. 10.
Held, M., Karp, R.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)
11. 11.
Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)
12. 12.
Kaiser, T.: A short proof of the tree-packing theorem. Discrete Math. 312(10), 1689–1691 (2012)
13. 13.
Kouider, M., Vestergaard, P.D.: Connected factors in graphs—a survey. Graphs Comb. 21(1), 1–26 (2005)
14. 14.
Lovász, L., Plummer, M.D.: Matching Theory, Volume 121 of North-Holland Mathematics Studies. Elsevier, Amsterdam (1986)Google Scholar
15. 15.
Narayanaswamy, N.S., Rahul, C.S.: Approximation and exact algorithms for special cases of connected f-factors. In: Beklemishev, L.D., Musatov, D.V. (eds.) Computer Science-Theory and Applications–10th International Computer Science Symposium in Russia, CSR 2015, Listvyanka, Russia, July 13–17, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9139, pp. 350–363. Springer, Berlin (2015)Google Scholar
16. 16.
Petersen, J.: Die Theorie der regulären graphs. Acta Math. 15(1), 193–220 (1891)
17. 17.
Philip, G., Ramanujan, M.S.: Vertex exponential algorithms for connected f-factors. In: Venkatesh, R., and Suresh, S.P. (eds.) 34th International Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014, December 15–17, 2014, New Delhi, India, Volume 29 of LIPIcs, pp. 61–71. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)Google Scholar
18. 18.
Plummer, M.D.: Graph factors and factorization: 1985–2003: a survey. Discrete Math. 307(7–8), 791–821 (2007)
19. 19.
Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)
20. 20.
Tutte, W.T.: The factorization of linear graphs. J. Lond. Math. Soc. 1(2), 107–111 (1947)
21. 21.
Tutte, W.T.: The factors of graphs. Can. J. Math. 4(3), 314–328 (1952)
22. 22.
Tutte, W.T.: A short proof of the factor theorem for finite graphs. Can. J. Math. 6(1954), 347–352 (1954)
23. 23.
Wahlström, M.: Abusing the Tutte matrix: an algebraic instance compression for the k-set-cycle problem. In: Natacha, P., Thomas, W. (eds.) 30th International Symposium on Theoretical Aspects of Computer Science, STACS 2013, February 27–March 2, 2013, Kiel, Germany, Volume 20 of LIPIcs, pp. 341–352. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)Google Scholar
24. 24.
West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (2001)Google Scholar
25. 25.
Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation, EUROSAM ’79, An International Symposium on Symbolic and Algebraic Computation, Marseille, France, June 1979, Proceedings, Volume 72 of Lecture Notes in Computer Science, pp. 216–226. Springer, Berlin (1979)Google Scholar

## Authors and Affiliations

• R. Ganian
• 1
• N. S. Narayanaswamy
• 2
• S. Ordyniak
• 3
• C. S. Rahul
• 4
• M. S. Ramanujan
• 1
1. 1.Algorithms and Complexity GroupTU WienViennaAustria
2. 2.Indian Institute of Technology MadrasChennaiIndia
3. 3.Department of Computer ScienceUniversity of SheffieldSheffieldUK
4. 4.Faculty of Mathematics, Informatics and MechanicsUniversity of WarsawWarsawPoland