pp 1–26 | Cite as

Hierarchical Partial Planarity

  • Patrizio AngeliniEmail author
  • Michael A. Bekos


In this paper we consider graphs whose edges are associated with a degree of importance, which may depend on the type of connections they represent or on how recently they appeared in the scene, in a streaming setting. The goal is to construct layouts of these graphs in which the readability of an edge is proportional to its importance. In our approach, more important edges must have fewer crossings. We formalize this problem and provide a polynomial-time testing algorithm for the case in which there exist three different degrees of importance. We also discuss interesting relationships with other constrained-planarity problems.


Graph partial planarity Edge crossings SPQR-trees 



Research on this work was partially supported by the DFG Grant KA812/18-1.


  1. 1.
    Angelini, P., Bekos, M.A.: Hierarchical partial planarity. In: Bodlaender, H.L., Woeginger, G.J. (eds.) Graph-Theoretic Concepts in Computer Science. Volume 10520 of LNCS, pp. 45–58. Springer, Cham (2017). CrossRefGoogle Scholar
  2. 2.
    Angelini, P., Binucci, C., Da Lozzo, G., Didimo, W., Grilli, L., Montecchiani, F., Patrignani, M., Tollis, I.G.: Algorithms and bounds for drawing non-planar graphs with crossing-free subgraphs. Comput. Geom. 50, 34–48 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Angelini, P., Chaplick, S., Cornelsen, S., Da Lozzo, G., Di Battista, G., Eades, P., Kindermann, P., Kratochvíl, J., Lipp, F., Rutter, I.: Simultaneous orthogonal planarity. In: Hu, Y., Nöllenburg, M. (eds.) Graph Drawing. Volume 9801 of LNCS, pp. 532–545. Springer, Cham (2016). CrossRefGoogle Scholar
  4. 4.
    Angelini, P., Da Lozzo, G., Neuwirth, D.: Advancements on SEFE and partitioned book embedding problems. Theor. Comput. Sci. 575, 71–89 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), 32 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability of two graphs whose intersection is a biconnected or a connected graph. J. Discrete Algorithms 14, 150–172 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bekos, M.A., van Dijk, T.C., Kindermann, P., Wolff, A.: Simultaneous drawing of planar graphs with right-angle crossings and few bends. J. Graph Algorithms Appl. 20(1), 133–158 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Binucci, C., Brandes, U., Di Battista, G., Didimo, W., Gaertler, M., Palladino, P., Patrignani, M., Symvonis, A., Zweig, K.A.: Drawing trees in a streaming model. Inf. Process. Lett. 112(11), 418–422 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 349–381. Chapman and Hall/CRC, Boca Raton (2013)Google Scholar
  10. 10.
    Bläsius, T., Rutter, I.: Disconnectivity and relative positions in simultaneous embeddings. Comput. Geom. 48(6), 459–478 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms 12(2):16:1–16, 46 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chan, T.M., Frati, F., Gutwenger, C., Lubiw, A., Mutzel, P., Schaefer, M.: Drawing partially embedded and simultaneously planar graphs. J. Graph Algorithms Appl. 19(2), 681–706 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Da Lozzo, G., Rutter, I.: Planarity of streamed graphs. In: Paschos, V.T., Widmayer, P. (eds.) Algorithms and Complexity, CIAC. Volume 9079 of LNCS, pp. 153–166. Springer, Cham (2015). CrossRefGoogle Scholar
  15. 15.
    Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996). MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996). MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Wismath, S.K.: Planar and quasi-planar simultaneous geometric embedding. Comput. J. 58(11), 3126–3140 (2015). CrossRefzbMATHGoogle Scholar
  18. 18.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J. Graph Algorithms Appl. 9(3), 347–364 (2005). MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Goodrich, M.T., Pszona, P.: Streamed graph drawing and the file maintenance problem. In: Wismath, S.K., Wolff, A. (eds.) Graph Drawing. Volume 8242 of LNCS, pp. 256–267. Springer, Cham (2013). CrossRefzbMATHGoogle Scholar
  20. 20.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) Graph Drawing. Volume 1984 of LNCS, pp. 77–90. Springer, Berlin (2000). CrossRefGoogle Scholar
  21. 21.
    Jelínek, V., Kratochvíl, J., Rutter, I.: A Kuratowski-type theorem for planarity of partially embedded graphs. Comput. Geom. 46(4), 466–492 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kowalik, L., Kurowski, M.: Oracles for bounded-length shortest paths in planar graphs. ACM Trans. Algorithms 2(3), 335–363 (2006). MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kratochvíl, J.: String graphs. I. The number of critical nonstring graphs is infinite. J. Combin. Theory Ser. B 52(1), 53–66 (1991). MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schaefer, M.: Picking planar edges; or, drawing a graph with a planar subgraph. In: Duncan, C.A., Symvonis, A. (eds.) Graph Drawing, volume 8871 of LNCS, pp. 13–24. Springer, Berlin (2014). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wilhelm-Schickhard-Institut für InformatikUniversität TübingenTübingenGermany

Personalised recommendations