Advertisement

Algorithmica

pp 1–26 | Cite as

Hierarchical Partial Planarity

  • Patrizio AngeliniEmail author
  • Michael A. Bekos
Article
  • 8 Downloads

Abstract

In this paper we consider graphs whose edges are associated with a degree of importance, which may depend on the type of connections they represent or on how recently they appeared in the scene, in a streaming setting. The goal is to construct layouts of these graphs in which the readability of an edge is proportional to its importance. In our approach, more important edges must have fewer crossings. We formalize this problem and provide a polynomial-time testing algorithm for the case in which there exist three different degrees of importance. We also discuss interesting relationships with other constrained-planarity problems.

Keywords

Graph partial planarity Edge crossings SPQR-trees 

Notes

Acknowledgements

Research on this work was partially supported by the DFG Grant KA812/18-1.

References

  1. 1.
    Angelini, P., Bekos, M.A.: Hierarchical partial planarity. In: Bodlaender, H.L., Woeginger, G.J. (eds.) Graph-Theoretic Concepts in Computer Science. Volume 10520 of LNCS, pp. 45–58. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68705-6_4 CrossRefGoogle Scholar
  2. 2.
    Angelini, P., Binucci, C., Da Lozzo, G., Didimo, W., Grilli, L., Montecchiani, F., Patrignani, M., Tollis, I.G.: Algorithms and bounds for drawing non-planar graphs with crossing-free subgraphs. Comput. Geom. 50, 34–48 (2015).  https://doi.org/10.1016/j.comgeo.2015.07.002 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Angelini, P., Chaplick, S., Cornelsen, S., Da Lozzo, G., Di Battista, G., Eades, P., Kindermann, P., Kratochvíl, J., Lipp, F., Rutter, I.: Simultaneous orthogonal planarity. In: Hu, Y., Nöllenburg, M. (eds.) Graph Drawing. Volume 9801 of LNCS, pp. 532–545. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50106-2_41 CrossRefGoogle Scholar
  4. 4.
    Angelini, P., Da Lozzo, G., Neuwirth, D.: Advancements on SEFE and partitioned book embedding problems. Theor. Comput. Sci. 575, 71–89 (2015).  https://doi.org/10.1016/j.tcs.2014.11.016 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), 32 (2015).  https://doi.org/10.1145/2629341 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability of two graphs whose intersection is a biconnected or a connected graph. J. Discrete Algorithms 14, 150–172 (2012).  https://doi.org/10.1016/j.jda.2011.12.015 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bekos, M.A., van Dijk, T.C., Kindermann, P., Wolff, A.: Simultaneous drawing of planar graphs with right-angle crossings and few bends. J. Graph Algorithms Appl. 20(1), 133–158 (2016).  https://doi.org/10.7155/jgaa.00388 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Binucci, C., Brandes, U., Di Battista, G., Didimo, W., Gaertler, M., Palladino, P., Patrignani, M., Symvonis, A., Zweig, K.A.: Drawing trees in a streaming model. Inf. Process. Lett. 112(11), 418–422 (2012).  https://doi.org/10.1016/j.ipl.2012.02.011 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 349–381. Chapman and Hall/CRC, Boca Raton (2013)Google Scholar
  10. 10.
    Bläsius, T., Rutter, I.: Disconnectivity and relative positions in simultaneous embeddings. Comput. Geom. 48(6), 459–478 (2015).  https://doi.org/10.1016/j.comgeo.2015.02.002 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms 12(2):16:1–16, 46 (2016).  https://doi.org/10.1145/2738054 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007).  https://doi.org/10.1016/j.comgeo.2006.05.006 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chan, T.M., Frati, F., Gutwenger, C., Lubiw, A., Mutzel, P., Schaefer, M.: Drawing partially embedded and simultaneously planar graphs. J. Graph Algorithms Appl. 19(2), 681–706 (2015).  https://doi.org/10.7155/jgaa.00375 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Da Lozzo, G., Rutter, I.: Planarity of streamed graphs. In: Paschos, V.T., Widmayer, P. (eds.) Algorithms and Complexity, CIAC. Volume 9079 of LNCS, pp. 153–166. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18173-8_11 CrossRefGoogle Scholar
  15. 15.
    Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996).  https://doi.org/10.1007/BF01961541 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996).  https://doi.org/10.1137/S0097539794280736 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Wismath, S.K.: Planar and quasi-planar simultaneous geometric embedding. Comput. J. 58(11), 3126–3140 (2015).  https://doi.org/10.1093/comjnl/bxv048 CrossRefzbMATHGoogle Scholar
  18. 18.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J. Graph Algorithms Appl. 9(3), 347–364 (2005).  https://doi.org/10.7155/jgaa.00113 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Goodrich, M.T., Pszona, P.: Streamed graph drawing and the file maintenance problem. In: Wismath, S.K., Wolff, A. (eds.) Graph Drawing. Volume 8242 of LNCS, pp. 256–267. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03841-4_23 CrossRefzbMATHGoogle Scholar
  20. 20.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) Graph Drawing. Volume 1984 of LNCS, pp. 77–90. Springer, Berlin (2000).  https://doi.org/10.1007/3-540-44541-2_8 CrossRefGoogle Scholar
  21. 21.
    Jelínek, V., Kratochvíl, J., Rutter, I.: A Kuratowski-type theorem for planarity of partially embedded graphs. Comput. Geom. 46(4), 466–492 (2013).  https://doi.org/10.1016/j.comgeo.2012.07.005 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kowalik, L., Kurowski, M.: Oracles for bounded-length shortest paths in planar graphs. ACM Trans. Algorithms 2(3), 335–363 (2006).  https://doi.org/10.1145/1159892.1159895 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kratochvíl, J.: String graphs. I. The number of critical nonstring graphs is infinite. J. Combin. Theory Ser. B 52(1), 53–66 (1991).  https://doi.org/10.1016/0095-8956(91)90090-7 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schaefer, M.: Picking planar edges; or, drawing a graph with a planar subgraph. In: Duncan, C.A., Symvonis, A. (eds.) Graph Drawing, volume 8871 of LNCS, pp. 13–24. Springer, Berlin (2014).  https://doi.org/10.1007/978-3-662-45803-7_2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wilhelm-Schickhard-Institut für InformatikUniversität TübingenTübingenGermany

Personalised recommendations