, Volume 81, Issue 5, pp 1818–1843 | Cite as

Characterizing and Recognizing 4-Map Graphs

  • Franz J. BrandenburgEmail author


We characterize 4-map graphs as kite-augmented 1-planar graphs and show that they can be recognized in cubic time. For the description we use 1-planar graphs rather than maps and provide a recognition algorithm that is simpler and easier to analyze than the ones by Chen et al. (in: Proceedings of 30th annual ACM symposium on the theory of computing, STOC ’98, pp. 514–523, 1998; Algorithmica 45(2):227–262, 2006).


Planar graphs Maps Map graphs 1-Planar graphs Graph algorithms 



I would like to thank Christian Bachmaier for many useful hints and the reviewers for their careful reading and their valuable suggestions.


  1. 1.
    Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line drawings of 3-connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) Proceedings of 21st International Symposium on Graph Drawing, GD 2013. LNCS, vol. 8242, pp. 83–94. Springer (2013)Google Scholar
  2. 2.
    Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Reislhuber, J.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-Planarity of graphs with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bachmaier, C., Brandenburg, F.J., Hanauer, K., Neuwirth, D., Reislhuber, J.: NIC-planar graphs. Discrete Appl. Math. 232, 23–40 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Biedl, T.C., Liotta, G., Montecchiani, F.: On visibility representations of non-planar graphs. In: Fekete, S.P., Lubiw, A. (eds.) Proceedings of 32nd International Symposium on Computational Geometry, SoCG 2016. LIPIcs, vol. 51, pp. 19:1–19:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  6. 6.
    Bodendiek, R., Schumacher, H., Wagner, K.: Bemerkungen zu einem Sechsfarbenproblem von G. Ringel. Abh. aus dem Math. Seminar der Univ. Hamburg 53, 41–52 (1983)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale Graphen. Mathematische Nachrichten 117, 323–339 (1984)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Brandenburg, F.J.: Recognizing IC-planar and NIC-planar graphs. JGAA 22(2), 239–271 (2018)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Brandenburg, F.J.: Recognizing optimal 1-planar graphs in linear time. Algorithmica 80(1), 1–28 (2018)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the density of maximal 1-planar graphs. In: van Kreveld, M., Speckmann, B. (eds.) Proceedings of 20th International Symposium on Graph Drawing, GD 2012. LNCS, vol. 7704, pp. 327–338. Springer (2013)Google Scholar
  11. 11.
    Chen, Z., Grigni, M., Papadimitriou, C.H.: Planar map graphs. In: Proceedings of 30th Annual ACM Symposium on the Theory of Computing, STOC ’98, pp. 514–523 (1998)Google Scholar
  12. 12.
    Chen, Z., Grigni, M., Papadimitriou, C.H.: Planar map graphs. Technical Report, Emory University (1999)Google Scholar
  13. 13.
    Chen, Z., Grigni, M., Papadimitriou, C.H.: Map graphs. J. ACM 49(2), 127–138 (2002)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Chen, Z., Grigni, M., Papadimitriou, C.H.: Recognizing hole-free 4-map graphs in cubic time. Algorithmica 45(2), 227–262 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Diestel, R.: Graph Theory. Springer, Berlin (2000)zbMATHGoogle Scholar
  19. 19.
    Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Math. 307(7–8), 854–865 (2007)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Harborth, H., Mengersen, I.: Drawings of the complete graph with maximum number of crossings. Congressus Numerantium 88, 225–228 (1992)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Henzinger, M.R., Rao, S., Gabow, H.N.: Computing vertex connectivity: new bounds from old techniques. J. Algorithms 34(2), 222–250 (2000)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Kynčl, J.: Enumeration of simple complete topological graphs. Eur. J. Comb. 30(7), 1676–1685 (2009)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Mnich, M., Rutter, I., Schmidt, J.M.: Linear-time recognition of map graphs with outerplanar witness. Discrete Optim. 28, 63–77 (2018)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. aus dem Math. Seminar der Univ. Hamburg 29, 107–117 (1965)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Schumacher, H.: Zur Struktur 1-planarer Graphen. Mathematische Nachrichten 125, 291–300 (1986)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Suzuki, Y.: Re-embeddings of maximum 1-planar graphs. SIAM J. Discrete Math. 24(4), 1527–1540 (2010)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Tamassia, R. (ed.): Handbook of Graph Drawing and Visualization. CRC Press, Boca Raton (2013)zbMATHGoogle Scholar
  32. 32.
    Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theor. 12(3), 335–341 (1988)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Thorup, M.: Map graphs in polynomial time. In: Proceedings of 39th Annual Symposium on Foundations of Computer Science, FOCS ’98. pp. 396–405 (1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PassauGermany

Personalised recommendations