Advertisement

Algorithmica

pp 1–33 | Cite as

Study of a Combinatorial Game in Graphs Through Linear Programming

  • Nathann Cohen
  • Fionn Mc Inerney
  • Nicolas Nisse
  • Stéphane Pérennes
Article
Part of the following topical collections:
  1. Special Issue: Algorithms and Computation

Abstract

In the Spy game played on a graph G, a single spy travels the vertices of G at speed s, while multiple slow guards strive to have, at all times, one of them within distance d of that spy. In order to determine the smallest number of guards necessary for this task, we analyze the game through a Linear Programming formulation and the fractional strategies it yields for the guards. We then show the equivalence of fractional and integral strategies in trees. This allows us to design a polynomial-time algorithm for computing an optimal strategy in this class of graphs. Using duality in Linear Programming, we also provide non-trivial bounds on the fractional guard-number of grids and tori, which gives a lower bound for the integral guard-number in these graphs. We believe that the approach using fractional relaxation and Linear Programming is promising to obtain new results in the field of combinatorial games.

Keywords

Cops and robber games Spy game Domination Graphs Linear Programming Tree Grid 

Notes

References

  1. 1.
    Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8, 1–12 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Balister, P., Shaw, A., Bollobás, B., Narayanan, B.P.: Catching a fast robber on the grid. JCTA 152, 341–352 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beaton, I., Finbow, S., MacDonald, J.A.: Eternal domination numbers of \(4\times n\) grid graphs. J. Comb. Math. Comb. Comput. 85, 33–48 (2013)zbMATHGoogle Scholar
  4. 4.
    Bonato, A., Chiniforooshan, E., Pralat, P.: Cops and robbers from a distance. Theor. Comput. Sci. 411(43), 3834–3844 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. American Mathematical Society, Providence (2011)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bondy, J.A., Murty, U.S.R.: Graph Theory, Graduate Texts in Mathematics, vol. 244. Springer, Berlin (2008)Google Scholar
  7. 7.
    Burger, A., Cockayne, E.J., Gründlingh, W.R., Mynhardt, C.M., van Vuuren, J.H., Winterbach, W.: Infinite order domination in graphs. J. Comb. Math. Comb. Comput. 50, 179–194 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cohen, N., Hilaire, M., Martins, N.A., Nisse, N., Pérennes, S.: Spy-game on graphs. In: 8th International Conference on Fun with Algorithms, FUN 2016, pp. 10:1–10:16 (2016)Google Scholar
  9. 9.
    Cohen, N., Mc Inerney, F., Nisse, N., Pérennes, S.: Study of a combinatorial game in graphs through linear programming. In: 28th International Symposium on Algorithms and Computation (ISAAC 2017), LIPIcs 92, Schloss Dagstuhl, pp. 22:1–22:13 (2017). https://hal.archives-ouvertes.fr/hal-01462890
  10. 10.
    Cohen, N., Martins, N.A., Mc Inerney, F., Nisse, N., Pérennes, S., Sampaio, R.: Spy-game on graphs: complexity and simple topologies. Theor. Comput. Sci. 725, 1–15 (2018). https://hal.archives-ouvertes.fr/hal-01782246v1
  11. 11.
    Delaney, A.Z., Messinger, M.E.: Closing the gap: Eternal domination on \(3\times n\) grids. Contrib. Discrete Math. (2015)Google Scholar
  12. 12.
    Fomin, F.V., Giroire, F., Jean-Marie, A., Mazauric, D., Nisse, N.: To satisfy impatient web surfers is hard. In: 6th International Conference on Fun with Algorithms (FUN), LNCS, vol. 7288, pp. 166–176 (2012)Google Scholar
  13. 13.
    Fomin, F.V., Golovach, P.A., Kratochvíl, J., Nisse, N., Suchan, K.: Pursuing a fast robber on a graph. Theor. Comput. Sci. 411(7–9), 1167–1181 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Giroire, F., Mazauric, D., Nisse, N., Pérennes, S., Soares, R.P.: Connected surveillance game. In: Moscibroda, T., Rescigno, A.A. (eds.) 20th International Colloquium on Structural Information and Communication Complexity (SIROCCO). Lecture Notes in Computer Science. Springer, Berlin (2013)Google Scholar
  15. 15.
    Giroire, F., Nisse, N., Pérennes, S., Soares, R.P.: Fractional combinatorial games. Technical report, INRIA, (2013). RR8371. http://hal.inria.fr/hal-00865345
  16. 16.
    Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T.: Eternal security in graphs. J. Comb. Math. Comb. Comput. 52, 160–180 (2005)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gonçalves, D., Pinlou, A., Rao, M., Thomassé, S.: The domination number of grids. SIAM J. Discrete Math. 25(3), 1443–1453 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Joret, G., Kaminski, M., Theis, D.O.: The cops and robber game on graphs with forbidden (induced) subgraphs. Contrib. Discrete Math. 5(2), 40–51 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kinnersley, W.B.: Cops and robbers is exptime-complete. JCTB 111, 201–220 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Klostermeyer, W.F., MacGillivray, G.: Eternal dominating sets in graphs. J. Comb. Math. Comb. Comput. 68, 97–111 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kosowski, A., Li, B., Nisse, N., Suchan, K.: k-Chordal graphs: from cops and robber to compact routing via treewidth. Algorithmica 72(3), 758–777 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kusters, R.: Memoryless determinacy of parity games. In: Automata, Logics, and Infinite Games: A Guide to Current Research, LNCS, vol. 2500, pp. 95–106 (2002)Google Scholar
  23. 23.
    Lamprou, I., Martin, R., Schewe, S.: Perpetually dominating large grids. In: 10th International Conference on Algorithms and Complexity (CIAC 2017), LNCS, vol. 10236, pp. 393–404 (2017)Google Scholar
  24. 24.
    Nowakowski, R.J., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math. 43, 235–239 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Quilliot, A.: Problèmes de jeux, de point fixe, de connectivité et de représentation sur des graphes, des ensembles ordonnés et des hypergraphes. Doctorat d’état, Univ. Paris 4 (1983)Google Scholar
  26. 26.
    Schröder, B.S.W.: The copnumber of a graph is bounded by \(\lfloor \frac{3}{2} genus (g) \rfloor + 3\). In: Koslowski, J., Melton, A. (eds.) Categorical Perspectives (Kent, OH, 1998). Trends in Mathematics, pp. 243–263. Birkhäuser, Boston (2001)Google Scholar
  27. 27.
    Scott, A., Sudakov, B.: A bound for the cops and robbers problem. SIAM J. Discrete Math. 25(3), 1438–1442 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    van Bommel, C.M., van Bommel, M.F.: Eternal domination numbers of \(5\times n\) grid graphs. J. Comb. Math. Comb. Comput. 97, 83–102 (2016)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LRICNRS, Univ Paris SudOrsayFrance
  2. 2.I3SUniversité Côte d’Azur, Inria, CNRSSophia AntipolisFrance

Personalised recommendations