, Volume 81, Issue 4, pp 1561–1583 | Cite as

Track Layouts, Layered Path Decompositions, and Leveled Planarity

  • Michael J. Bannister
  • William E. Devanny
  • Vida Dujmović
  • David Eppstein
  • David R. WoodEmail author


We investigate two types of graph layouts, track layouts and layered path decompositions, and the relations between their associated parameters track-number and layered pathwidth. We use these two types of layouts to characterize leveled planar graphs, which are the graphs with planar leveled drawings with no dummy vertices. It follows from the known NP-completeness of leveled planarity that track-number and layered pathwidth are also NP-complete, even for the smallest constant parameter values that make these parameters nontrivial. We prove that the graphs with bounded layered pathwidth include outerplanar graphs, Halin graphs, and squaregraphs, but that (despite having bounded track-number) series–parallel graphs do not have bounded layered pathwidth. Finally, we investigate the parameterized complexity of these layouts, showing that past methods used for book layouts do not work to parameterize the problem by treewidth or almost-tree number but that the problem is (non-uniformly) fixed-parameter tractable for tree-depth.


Track layouts Layered path decompositions Track-number Layered pathwidth Leveled planar graphs Outerplanar graphs Halin graphs Squaregraphs Unit disc graphs Parameterized complexity Treewidth Almost-tree number Tree-depth 



  1. 1.
    Abel, Z., Demaine, E.D., Demaine, M.L., Eppstein, D., Lubiw, A., Uehara, R.: Flat foldings of plane graphs with prescribed angles and edge lengths. J. Comput. Geom. 9(1), 71–91 (2018)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bandelt, H.-J., Chepoi, V., Eppstein, D.: Combinatorics and geometry of finite and infinite squaregraphs. SIAM J. Discrete Math. 24(4), 1399–1440 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. J. Graph Algorithms Appl. 18(1), 23–49 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page drawings of graphs with bounded treewidth. In: 22nd International Symposium on Graph Drawing (GD 2014), LNCS, vol. 8871, pp. 210–221. Springer (2014).
  5. 5.
    Bannister, M.J., Eppstein, D., Simons, J.A.: Fixed parameter tractability of crossing minimization of almost-trees. In: 21st International Symposium on Graph Drawing (GD 2013), LNCS, vol. 8242, pp. 340–351. Springer (2013).
  6. 6.
    Bastert, O., Matuszewski, C.: Layered drawings of digraphs. In: Drawing Graphs, Methods and Models, vol. 2025, pp. 87–120. LNCS (2001).
  7. 7.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Layered Drawings of Digraphs, Graph Drawing: Algorithms for the Visualization of Graphs, pp. 265–302. Prentice-Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  8. 8.
    Di Giacomo, E., Meijer, H.: Track drawings of graphs with constant queue number. In: Proceedings of 11th International Symposium on Graph Drawing (GD ’03), LNCS, vol. 2912, pp. 214–225. Springer (2004).
  9. 9.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, Texts in Computer Science. Springer, Berlin (2013).
  10. 10.
    Dujmović, V.: Graph layouts via layered separators. J. Combin. Theory Ser. B 110, 79–89 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dujmović, V., Eppstein, D., Wood, D.R.: Genus, treewidth, and local crossing number. In: Proceedings of 23rd International Symposium on Graph Drawing and Network Visualization (GD ’15), Lecture Notes in Computer Science, vol. 9411, pp. 87–98. Springer (2015)Google Scholar
  12. 12.
    Dujmović, V., Eppstein, D., Wood, D.R.: Structure of graphs with locally restricted crossings. SIAM J. Disc. Math. 31(2), 805–824 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dujmović, V., Fellows, M.R., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F., Whitesides, S., Wood, D.R.: On the parameterized complexity of layered graph drawing. Algorithmica 52(2), 267–292 (2008). MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dujmović, V., Frati, F.: Stacks and queue layouts via layered separators. J. Graph Algorithms Appl. 22, 89–99 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dujmović, V., Joret, G., Morin, P., Norin, S., Wood, D.R.: Orthogonal tree decompositions of graphs. SIAM J. Discrete Math. 32(2), 839–863 (2018). arXiv: 1701.05639.
  16. 16.
    Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width. SIAM J. Comput. 34(3), 553–579 (2005). MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dujmović, V., Morin, P., Wood, D.R.: Layered separators for queue layouts, 3D graph drawing and nonrepetitive coloring. In: Proceedings of 54th Symposium on Foundations of Computer Science (FOCS 2013), pp. 280–289. IEEE Computer Society (2013).
  18. 18.
    Dujmović, V., Morin, P., Wood, D.R.: Layered separators in minor-closed graph classes with applications. J. Combin. Theory Ser. B 127, 111–147 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dujmović, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discrete Math. Theor. Comput. Sci. 6(2), 497–521 (2004).
  20. 20.
    Dujmović, V., Sidiropoulos, A., Wood, D.R.: Layouts of expander graphs. Chic. J. Theor. Comput. Sci. 2016(1) (2016).
  21. 21.
    Dujmović, V., Wood, D.R.: Three-dimensional grid drawings with sub-quadratic volume. In: János, P. (ed.) Towards a Theory of Geometric Graphs, Contemporary Mathematics, vol. 342, pp. 55–66. American Mathematical Society, Providence (2004).
  22. 22.
    Dujmović, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph subdivisions. Discrete Math. Theor. Comput. Sci. 7(1), 155–201 (2005).
  23. 23.
    Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–403 (1994). MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Felsner, S., Liotta, G., Wismath, S.K.: Straight-line drawings on restricted integer grids in two and three dimensions. J. Graph Algorithms Appl. 7(4), 363–398 (2003). MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Halin, R.: Studies on minimally \(n\)-connected graphs. In: Combinatorial Mathematics and Its Applications (Proc. Conf., Oxford, 1969), pp. 129–136. Academic Press (1971)Google Scholar
  26. 26.
    Halin, R.: \(S\)-functions for graphs. J. Geom. 8(1–2), 171–186 (1976). CrossRefzbMATHGoogle Scholar
  27. 27.
    Harary, F., Schwenk, A.: A new crossing number for bipartite graphs. Util. Math. 1, 203–209 (1972)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Harvey, D.J., Wood, D.R.: Parameters tied to treewidth. J. Graph Theory 84(4), 364–385 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Healy, P., Nikolov, N.S.: How to layer a directed acyclic graph. In: 9th International Symposium on Graph Drawing (GD 2001), LNCS, vol. 2265, pp. 16–30. Springer (2002).
  30. 30.
    Healy, P., Nikolov, N.S.: Hierarchical Drawing Algorithms, Handbook on Graph Drawing and Visualization, pp. 409–453. CRC Press, Boca Raton (2013)Google Scholar
  31. 31.
    Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958 (1992). MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Nešetřil, J., de Mendez, P.O.: Sparsity (Graphs, Structures, and Algorithms), Algorithms and Combinatorics, vol. 28. Springer, Berlin (2012).
  33. 33.
    Robertson, N., Seymour, P.: Graph minors, I: excluding a forest. J. Combin. Theory Ser. B 35(1), 39–61 (1983). MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986). MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Scheffler, P.: Optimal embedding of a tree into an interval graph in linear time. In: 4th Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, Annals of Discrete Mathematics, vol. 51, pp. 287–291. North-Holland (1992).
  36. 36.
    Shahrokhi, F.: New representation results for planar graphs. In: 29th European Workshop on Computational Geometry (EuroCG 2013), pp. 177–180 (2013). arXiv: 1502.06175
  37. 37.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. SMC–11(2), 109–125 (1981). MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wikipedia: Winding Number (2016). Accessed 24 July 2018
  39. 39.
    Wood, D.R.: Clique minors in Cartesian products of graphs. N. Y. J. Math. 17, 627–682 (2011).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PinterestSan FranciscoUSA
  2. 2.Department of Computer ScienceUniversity of CaliforniaIrvineUSA
  3. 3.School of Computer Science and Electrical EngineeringUniversity of OttawaOttawaCanada
  4. 4.School of Mathematical SciencesMonash UniversityMelbourneAustralia

Personalised recommendations