, Volume 81, Issue 2, pp 796–827 | Cite as

Sorting by Swaps with Noisy Comparisons

  • Tomáš Gavenčiak
  • Barbara Geissmann
  • Johannes LenglerEmail author
Part of the following topical collections:
  1. Special Issue on Theory of Genetic and Evolutionary Computation


We study sorting of permutations by random swaps if each comparison gives the wrong result with some fixed probability \(p<1/2\). We use this process as prototype for the behaviour of randomized, comparison-based optimization heuristics in the presence of noisy comparisons. As quality measure, we compute the expected fitness of the stationary distribution. To measure the runtime, we compute the minimal number of steps after which the average fitness approximates the expected fitness of the stationary distribution. We study the process where in each round a random pair of elements at distance at most r are compared. We give theoretical results for the extreme cases \(r=1\) and \(r=n\), and experimental results for the intermediate cases. We find a trade-off between faster convergence (for large r) and better quality of the solution after convergence (for small r).


Sorting Random swaps Evolutionary algorithms Comparison-based Noise Optimization heuristics 



We would like to thank all the anonymous reviewers for their careful and attentive reading, as well as their numerous helpful comments to improve this paper. Tomáš Gavenčiak was supported by the Czech Science Foundation (GAČR) Project 17-10090Y “Network optimization”. Barbara Geissmann was supported by the Swiss National Science Foundation (SNSF), Project Number 200021_165524.


  1. 1.
    Akimoto, Y., Morales, S.A., Teytaud, O.: Analysis of runtime of optimization algorithms for noisy functions over discrete codomains. Theor. Comput. Sci. 605, 42–50 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Assaf, S., Upfal, E.: Fault tolerant sorting networks. SIAM J. Discrete Math. 4(4), 472–480 (1991). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Astete-Morales, S., Cauwet, M., Liu, J., Teytaud, O.: Simple and cumulative regret for continuous noisy optimization. Theor. Comput. Sci. 617, 12–27 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Astete-Morales, S., Cauwet, M., Teytaud, O.: Evolution strategies with additive noise: a convergence rate lower bound. In: He, J., Jansen, T., Ochoa, G., Zarges, C. (eds.) Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII, Aberystwyth, United Kingdom, January 17–20, 2015, pp. 76–84. ACM (2015).
  5. 5.
    Astete-Morales, S., Cauwet, M., Teytaud, O.: Analysis of different types of regret in continuous noisy optimization. In: Friedrich, T., Neumann, F., Sutton A.M. (eds.) Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, Denver, CO, USA, July 20–24, 2016, pp. 205–212. ACM (2016).
  6. 6.
    Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and Recent Developments, Series on Theoretical Computer Science, vol. 1. World Scientific Publishing Co. Inc., River Edge (2011)zbMATHGoogle Scholar
  7. 7.
    Benjamini, I., Berger, N., Hoffman, C., Mossel, E.: Mixing times of the biased card shuffling and the asymmetric exclusion process. Trans. Am. Math. Soc. 357(8), 3013–3029 (2005).
  8. 8.
    Beyer, H.G.: Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. Comput. Methods Aappl. Mech. Eng. 186(2), 239–267 (2000). CrossRefzbMATHGoogle Scholar
  9. 9.
    Cauwet, M., Liu, J., Rozière, B., Teytaud, O.: Algorithm portfolios for noisy optimization. Ann. Math. Artif. Intell. 76(1–2), 143–172 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dang, D., Jansen, T., Lehre, P.K.: Populations can be essential in tracking dynamic optima. Algorithmica 78(2), 660–680 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applications, 1st edn. Springer, Secaucus (1997). CrossRefzbMATHGoogle Scholar
  12. 12.
    Diaconis, P.: Group Representations in Probability and Statistics, vol. 11. Institute of Mathematical Statistics (1998).
  13. 13.
    Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. J. R. Stat. Soc. Ser. B (Methodol.) 39(2), 262–268 (1977).
  14. 14.
    Doerr, B., Happ, E.: Directed trees: a powerful representation for sorting and ordering problems. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008, June 1–6, 2008, Hong Kong, China, pp. 3606–3613. IEEE (2008).
  15. 15.
    Droste, S.: Analysis of the (1\(+\)1) EA for a noisy OneMax. In: Deb, K., Poli, R., Banzhaf, W., Beyer, H., Burke, E.K., Darwen, P.J., Dasgupta, D., Floreano, D., Foster, J.A., Harman, M., Holland, O., Lanzi, P.L., Spector, L., Tettamanzi, A., Thierens, D., Tyrrell, A.M. (eds.) Genetic and Evolutionary Computation—GECCO 2004, Genetic and Evolutionary Computation Conference, Seattle, WA, USA, June 26–30, 2004, Proceedings, Part I, Lecture Notes in Computer Science, vol. 3102, pp. 1088–1099. Springer (2004).
  16. 16.
    Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact genetic algorithm is efficient under extreme gaussian noise. IEEE Trans. Evol. Comput. 21(3), 477–490 (2017). Google Scholar
  17. 17.
    Gavenciak, T., Geissmann, B., Lengler, J.: Sorting by swaps with noisy comparisons. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin, Germany, July 15–19, 2017, pp. 1375–1382 (2017).
  18. 18.
    Geissmann, B., Penna, P.: Sort well with energy-constrained comparisons. ArXiv e-prints (2016). arxiv:1610.09223
  19. 19.
    Giesen, J., Schuberth, E., Stojaković, M.: Approximate sorting. Fundam. Inform. 90(1–2), 67–72 (2009). MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments. Algorithmica 75(3), 462–489 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley Professional, Reading (1994)zbMATHGoogle Scholar
  22. 22.
    Hadjicostas, P., Monico, C.: A new inequality related to the Diaconis-Graham inequalities and a new characterisation of the dihedral group. Australas. J. Comb. 63(2), 226–245 (2015).
  23. 23.
    Jansen, T.: Analyzing Evolutionary Algorithms—The Computer Science Perspective. Natural Computing Series. Springer Science & Business Media (2013).
  24. 24.
    Kelly, F.: Reversibility and stochastic networks. Wiley Series in Probability and Mathematical Statistics: Tracts on Probability and Statistics. Wiley (1979).
  25. 25.
    Kötzing, T., Lissovoi, A., Witt, C.: (1\(+\)1) EA on generalized dynamic OneMax. In: Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII, Aberystwyth, United Kingdom, January 17–20, 2015, pp. 40–51 (2015).
  26. 26.
    Levin, D., Peres, Y.: Markov Chains and Mixing Times, 2nd edn. MBK. American Mathematical Society (2017).
  27. 27.
    Liu, J., St-Pierre, D.L., Teytaud, O.: A mathematically derived number of resamplings for noisy optimization. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO Comp ’14, pp. 61–62. ACM, New York, NY, USA (2014).
  28. 28.
    Ma, Y.: Fault-tolerant sorting networks. Ph.D. thesis, Massachusetts Institute of Technology (1994).
  29. 29.
    Merelo, J., Chelly, Z., Mora, A., Fernández-Ares, A., Esparcia-Alcázar, A.I., Cotta, C., de las Cuevas, P., Rico, N.: A statistical approach to dealing with noisy fitness in evolutionary algorithms. In: Computational Intelligence: International Joint Conference, IJCCI 2014 Rome, Italy, October 22–24, 2014 Revised Selected Papers, pp. 79–95. Springer (2016).
  30. 30.
    Mitchell, L.H.: Maximal total absolute displacement of a permutation. Discrete Math 274(1–3), 319–321 (2004). MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Neumann, F., Witt, C.: Bioinspired Comptation in Combinatorial Optimization: Algorithms and Their Computational Complexity, 1st edn. Springer, New York (2010).
  32. 32.
    Nix, A.E., Vose, M.D.: Modeling genetic algorithms with markov chains. Ann. Math. Artif. Intell. 5(1), 77–88 (1992). MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Qian, C., Yu, Y., Jin, Y., Zhou, Z.: On the effectiveness of sampling for evolutionary optimization in noisy environments.8672, 302–311 (2014).
  34. 34.
    Qian, C., Yu, Y., Zhou, Z.H.: Analyzing evolutionary optimization in noisy environments. Evol. Comput. (2015).
  35. 35.
    Rakshit, P., Konar, A., Das, S.: Noisy evolutionary optimization algorithms—a comprehensive survey. Swarm Evol. Comput. 33, 18–45 (2017). CrossRefGoogle Scholar
  36. 36.
    Safe, M.D., Carballido, J.A., Ponzoni, I., Brignole, N.B.: On stopping criteria for genetic algorithms. In: Advances in Artificial Intelligence—SBIA 2004, 17th Brazilian Symposium on Artificial Intelligence, São Luis, Maranhão, Brazil, September 29—October 1, 2004, Proceedings, pp. 405–413 (2004).
  37. 37.
    Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest paths problems. J. Math. Model. Algorithms 3(4), 349–366 (2004). MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Spitzer, F.: Interaction of markov processes. Adv. Math. 5(2), 246–290 (1970). MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Tracy, C.A., Widom, H.: Asymptotics in asep with step initial condition. Commun. Math. Phys. 290(1), 129–154 (2009). MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsCharles UniversityPragueCzech Republic
  2. 2.Department of Computer Science, FEECTUPragueCzech Republic
  3. 3.Department of Computer ScienceETH ZurichZurichSwitzerland

Personalised recommendations