pp 1–43 | Cite as

Clustered Planarity with Pipes

  • Patrizio Angelini
  • Giordano Da LozzoEmail author


We study the version of the C-Planarity problem in which edges connecting the same pair of clusters must be grouped into pipes, which generalizes the Strip Planarity problem. We give algorithms to decide several families of instances for the two variants in which the order of the pipes around each cluster is given as part of the input or can be chosen by the algorithm.


Clustered planarity Fixed parameter tractability Simultaneous embeddings with fixed edges Graph drawing 



  1. 1.
    Aigner, M., Ziegler, G.M.: Proofs from THE BOOK, 3rd edn. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Akitaya, H.A., Fulek, R., Tóth, C.D.: Recognizing weak embeddings of graphs. In: Czumaj, A. (ed.) Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, 7–10 Jan 2018, pp. 274–292. SIAM (2018).
  3. 3.
    Angelini, P., Da Lozzo, G.: Clustered planarity with pipes. In: Hong, S.-H. (ed.) 27th International Symposium on Algorithms and Computation, ISAAC 2016, 12–14 Dec 2016, Sydney, Australia. LIPIcs, vol. 64, pp. 13:1–13:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016).
  4. 4.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing for embedded planar graphs. Algorithmica 77(4), 1022–1059 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Angelini, P., Da Lozzo, G., Neuwirth, D.: Advancements on SEFE and partitioned book embedding problems. Theor. Comput. Sci. 575, 71–89 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. CRC Press, Boca Raton (2013)Google Scholar
  8. 8.
    Bläsius, T., Rutter, I.: A new perspective on clustered planarity as a combinatorial embedding problem. Theor. Comput. Sci. 609, 306–315 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms 12(2), 16 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chang, H.-C., Erickson, J., Xu, C.: Detecting weakly simple polygons. In: Indyk, P. (ed.) Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pp. 1655–1670. SIAM (2015)Google Scholar
  12. 12.
    Chimani, M., Klein, K.: Shrinking the search space for clustered planarity. In: Didimo, W., Patrignani, M. (eds.) Graph Drawing—20th International Symposium, GD 2012, Redmond, WA, USA, 19–21 Sept 2012. Revised Selected Papers, Lecture Notes in Computer Science, vol. 7704, pp. 90–101. Springer (2012).
  13. 13.
    Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity of c-connected clustered graphs. J. Graph Algorithms Appl. 12(2), 225–262 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of clusters. J. Graph Algorithms Appl. 9(3), 391–413 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: On embedding a cycle in a plane graph. Discrete Math. 309(7), 1856–1869 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Da Lozzo, G., Eppstein, D., Goodrich, M.T., Gupta, S.: Subexponential-time and FPT algorithms for embedded flat clustered planarity. In: Brandstädt, A., Köhler, E., Meer, K. (eds.) Graph-Theoretic Concepts in Computer Science—44th International Workshop, WG 2018, Cottbus, Germany, 27–29 June 2018, Proceedings. Lecture Notes in Computer Science, vol. 11159, pp. 111–124. Springer (2018).
  17. 17.
    Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.) Third Annual European Symposium on Algorithms—ESA ’95. LNCS, vol. 979, pp. 213–226. Springer (1995)Google Scholar
  18. 18.
    Fulek, R.: Toward the Hanani–Tutte theorem for clustered graphs. arXiv:1410.3022 (2014)
  19. 19.
    Fulek, R.: Towards the Hanani–Tutte theorem for clustered graphs. In: Kratsch, D., Todinca, I. (eds.) 40th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2014. LNCS, vol. 8747, pp. 176–188. Springer (2014)Google Scholar
  20. 20.
    Fulek, R.: C-planarity of embedded cyclic c-graphs. Comput. Geom. 66, 1–13 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fulek, R.: Embedding graphs into embedded graphs. In: Okamoto, Y., Tokuyama, T. (eds.) 28th International Symposium on Algorithms and Computation, ISAAC 2017, 9–12 Dec 2017, Phuket, Thailand. LIPIcs, vol. 92, pp. 34:1–34:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017).
  22. 22.
    Fulek, R., Kyncl, J.: Hanani–Tutte for approximating maps of graphs. In: Speckmann, B., Tóth, C.D. (eds.) 34th International Symposium on Computational Geometry, SoCG 2018, 11–14 June 2018, Budapest, Hungary. LIPIcs, vol. 99, pp. 39:1–39:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).
  23. 23.
    Hsu, W.-L., McConnell, R.M.: PC trees and circular-ones arrangements. Theor. Comput. Sci. 296(1), 99–116 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hsu, W.-L., McConnell, R.M.: PQ trees, PC trees, and planar graphs. In: Mehta, D.P., Sahni, S. (eds.) Handbook of Data Structures and Applications. Chapman and Hall, London (2004)Google Scholar
  25. 25.
    Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B.: Clustered planarity: embedded clustered graphs with two-component clusters. In: Tollis, I.G., Patrignani, M. (eds.) 16th International Symposium on Graph Drawing, GD 2008. LNCS, vol. 5417, pp. 121–132. Springer (2008)Google Scholar
  26. 26.
    Jünger, M., Schulz, M.: Intersection graphs in simultaneous embedding with fixed edges. J. Graph Algorithms Appl. 13(2), 205–218 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Schaefer, M.: Toward a theory of planarity: Hanani–Tutte and planarity variants. J. Graph Algorithms Appl. 17(4), 367–440 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wilhelm-Schickard-Institut für InformatikTübingen UniversityTübingenGermany
  2. 2.Dipartimento di IngegneriaRoma Tre UniversityRomeItaly

Personalised recommendations