, Volume 80, Issue 11, pp 3177–3191 | Cite as

Spanning Trees in Multipartite Geometric Graphs

  • Ahmad BiniazEmail author
  • Prosenjit Bose
  • David Eppstein
  • Anil Maheshwari
  • Pat Morin
  • Michiel Smid


Let R and B be two disjoint sets of points in the plane where the points of R are colored red and the points of B are colored blue, and let \(n=|R\cup B|\). A bichromatic spanning tree is a spanning tree in the complete bipartite geometric graph with bipartition (RB). The minimum (respectively maximum) bichromatic spanning tree problem is the problem of computing a bichromatic spanning tree of minimum (respectively maximum) total edge length. (1) We present a simple algorithm that solves the minimum bichromatic spanning tree problem in \(O(n\log ^3 n)\) time. This algorithm can easily be extended to solve the maximum bichromatic spanning tree problem within the same time bound. It also can easily be generalized to multicolored point sets. (2) We present \(\Theta (n\log n)\)-time algorithms that solve the minimum and the maximum bichromatic spanning tree problems. (3) We extend the bichromatic spanning tree algorithms and solve the multicolored version of these problems in \(O(n\log n\log k)\) time, where k is the number of different colors (or the size of the multipartition in a complete multipartite geometric graph).


Multipartite geometric graphs Minimum spanning tree Maximum spanning tree 


  1. 1.
    Aggarwal, A., Edelsbrunner, H., Raghavan, P., Tiwari, P.: Optimal time bounds for some proximity problems in the plane. Inf. Process. Lett. 42(1), 55–60 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aggarwal, A., Guibas, L.J., Saxe, J.B., Shor, P.W.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4, 591–604 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Avis, D.: Lower bounds for geometric problems. In: 18th Allerton Conference, Urbana, IL, pp. 35–40 (1980)Google Scholar
  4. 4.
    Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a Delaunay triangulation in linear time. Algorithmica 34(1), 39–46 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cherkassky, B.V., Goldberg, A.V., Silverstein, C.: Buckets, heaps, lists, and monotone priority queues. SIAM J. Comput. 28(4), 1326–1346 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Edelsbrunner, H.: Computing the extreme distances between two convex polygons. J. Algorithms 6(2), 213–224 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P., Sharir, M.: Dynamic planar Voronoi diagrams for general distance functions and their algorithmic applications. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (\(SODA\)), pp. 2495–2504 (2017)Google Scholar
  8. 8.
    Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: 20th Annual Symposium on Foundations of Computer Science, pp. 18–27 (1979)Google Scholar
  9. 9.
    Löffler, M., Mulzer, W.: Triangulating the square and squaring the triangle: quadtrees and Delaunay triangulations are equivalent. SIAM J. Comput. 41(4), 941–974 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Monma, C.L., Paterson, M., Suri, S., Yao, F.F.: Computing Euclidean maximum spanning trees. Algorithmica 5(3), 407–419 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Preparata, F.P., Shamos, M.I.: Computational Geometry—An Introduction. Texts and Monographs in Computer Science. Springer, Berlin (1985)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ahmad Biniaz
    • 1
    Email author
  • Prosenjit Bose
    • 1
  • David Eppstein
    • 2
  • Anil Maheshwari
    • 1
  • Pat Morin
    • 1
  • Michiel Smid
    • 1
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada
  2. 2.Computer Science DepartmentUniversity of CaliforniaIrvineUSA

Personalised recommendations