Algorithmica

, Volume 80, Issue 5, pp 1732–1768

# Static and Self-Adjusting Mutation Strengths for Multi-valued Decision Variables

Article
Part of the following topical collections:
1. Special Issue on Genetic and Evolutionary Computation

## Abstract

The most common representation in evolutionary computation are bit strings. With very little theoretical work existing on how to use evolutionary algorithms for decision variables taking more than two values, we study the run time of simple evolutionary algorithms on some OneMax-like functions defined over $$\varOmega = \{0, 1, \ldots , r-1\}^n$$. We observe a crucial difference in how we extend the one-bit-flip and standard-bit mutation operators to the multi-valued domain. While it is natural to modify a random position of the string or select each position of the solution vector for modification independently with probability 1/n, there are various ways to then change such a position. If we change each selected position to a random value different from the original one, we obtain an expected run time of $$\varTheta (nr \log n)$$. If we change each selected position by $$+1$$ or $$-1$$ (random choice), the optimization time reduces to $$\varTheta (nr + n\log n)$$. If we use a random mutation strength $$i \in \{0,1,\ldots ,r-1\}$$ with probability inversely proportional to i and change the selected position by $$+i$$ or $$-i$$ (random choice), then the optimization time becomes $$\varTheta (n \log (r)(\log n +\log r))$$, which is asymptotically faster than the previous if $$r = \omega (\log (n) \log \log (n))$$. Interestingly, a better expected performance can be achieved with a self-adjusting mutation strength that is based on the success of previous iterations. For the mutation operator that modifies a randomly chosen position, we show that the self-adjusting mutation strength yields an expected optimization time of $$\varTheta (n (\log n + \log r))$$, which is best possible among all dynamic mutation strengths. In our proofs, we use a new multiplicative drift theorem for computing lower bounds, which is not restricted to processes that move only towards the target.

## Keywords

Theory of randomized search heuristics Runtime analysis Genetic algorithms Parameter choice Parameter control

## Notes

### Acknowledgements

This work was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, in a joint call with Programme Gaspard Monge en Optimisation et Recherche Opérationnelle.

## References

1. 1.
Auger, A., Doerr, B.: Theory of Randomized Search Heuristics. World Scientific, Singapore (2011)
2. 2.
Auger, A., Hansen, N.: Linear convergence on positively homogeneous functions of a comparison based step-size adaptive randomized search: the (1+1) ES with generalized one-fifth success rule. CoRR (2013). arXiv:1310.8397
3. 3.
Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Proceedings of Parallel Problem Solving from Nature (PPSN’14), Lecture Notes in Computer Science, vol. 8672, pp. 892–901. Springer (2014)Google Scholar
4. 4.
Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Proceedings of Parallel Problem Solving from Nature (PPSN’10), Lecture Notes in Computer Science, vol. 6238, pp. 1–10. Springer (2010)Google Scholar
5. 5.
Buzdalov, M., Doerr, B.: Runtime analysis of the $$(1+(\lambda ,\lambda ))$$ genetic algorithm on random satisfiable 3-CNF formulas. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’17). ACM (2017)Google Scholar
6. 6.
Dang, D., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 803–813. Springer (2016)Google Scholar
7. 7.
Dietzfelbinger, M., Rowe, J.E., Wegener, I., Woelfel, P.: Tight bounds for blind search on the integers and the reals. Comb. Probab. Comput. 19, 711–728 (2010)
8. 8.
Doerr, B.: Analyzing randomized search heuristics: tools from probability theory. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics, pp. 1–20. World Scientific Publishing, Singapore (2011)Google Scholar
9. 9.
Doerr, B., Doerr, C.: The impact of random initialization on the runtime of randomized search heuristics. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’14), pp. 1375–1382. ACM (2014)Google Scholar
10. 10.
Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: applying the 1/5-th rule in discrete settings. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15), pp. 1335–1342. ACM (2015)Google Scholar
11. 11.
Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theor. Comput. Sci. 567, 87–104 (2015)
12. 12.
Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step sizes for multi-valued decision variables. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 782–791. Springer (2016)Google Scholar
13. 13.
Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued decision variables. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1115–1122. ACM (2016)Google Scholar
14. 14.
Doerr, B., Doerr, C., Yang, J.: $$k$$-bit mutation with self-adjusting $$k$$ outperforms standard bit mutation. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 824–834. Springer (2016)Google Scholar
15. 15.
Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1123–1130. ACM (2016)Google Scholar
16. 16.
Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’11), pp. 2083–2090. ACM (2011)Google Scholar
17. 17.
Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+$$\lambda$$) evolutionary algorithm with self-adjusting mutation rate. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’17). ACM (2017)Google Scholar
18. 18.
Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)
19. 19.
Doerr, B., Johannsen, D.: Adjacency list matchings: an ideal genotype for cycle covers. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’07), pp. 1203–1210. ACM (2007)Google Scholar
20. 20.
Doerr, B., Johannsen, D., Schmidt, M.: Runtime analysis of the (1+1) evolutionary algorithm on strings over finite alphabets. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 119–126. ACM (2011)Google Scholar
21. 21.
Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)
22. 22.
Doerr, B., Pohl, S.: Run-time analysis of the (1+1) evolutionary algorithm optimizing linear functions over a finite alphabet. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’12), pp. 1317–1324. ACM (2012)Google Scholar
23. 23.
Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-box optimization. Theory Comput. Syst. 39, 525–544 (2006)
24. 24.
Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evolut. Comput. 3, 124–141 (1999)
25. 25.
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)
26. 26.
Gunia, C.: On the analysis of the approximation capability of simple evolutionary algorithms for scheduling problems. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’05), pp. 571–578. ACM (2005)Google Scholar
27. 27.
Hansen, N., Gawelczyk, A., Ostermeier, A.: Sizing the population with respect to the local progress in (1,$$\lambda$$)-evolution strategies—a theoretical analysis. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC’95), pp. 80–85. IEEE (1995)Google Scholar
28. 28.
He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127, 57–85 (2001)
29. 29.
Jägersküpper, J.: Rigorous runtime analysis of the (1+1) ES: 1/5-rule and ellipsoidal fitness landscapes. In: Proceedings of Foundations of Genetic Algorithms (FOGA’05), Lecture Notes in Computer Science, vol. 3469, pp. 260–281. Springer (2005)Google Scholar
30. 30.
Jägersküpper, J.: Oblivious randomized direct search for real-parameter optimization. In: Proceedings of European Symposium on Algorithms (ESA), Lecture Notes in Computer Science, vol. 5193, pp. 553–564. Springer (2008)Google Scholar
31. 31.
Jansen, T.: Analyzing Evolutionary Algorithms—The Computer Science Perspective. Springer, Berlin (2013)
32. 32.
Jansen, T., Wegener, I.: On the analysis of a dynamic evolutionary algorithm. J. Discrete Algorithms 4, 181–199 (2006)
33. 33.
Johannsen, D.: Random combinatorial structures and randomized search heuristics. Ph.D. thesis, Saarland University. http://scidok.sulb.uni-saarland.de/volltexte/2011/3529/ (2010)
34. 34.
Karafotias, G., Hoogendoorn, M., Eiben, A.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evolut. Comput. 19, 167–187 (2015)
35. 35.
Kötzing, T., Lissovoi, A., Witt, C.: (1+1) EA on generalized dynamic OneMax. In: Proceedings of Foundations of Genetic Algorithms (FOGA’15), pp. 40–51. ACM (2015)Google Scholar
36. 36.
Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 181–192. ACM (2011)Google Scholar
37. 37.
Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64, 623–642 (2012)
38. 38.
Lissovoi, A., Witt, C.: MMAS vs. population-based EA on a family of dynamic fitness functions. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’14), pp. 1399–1406. ACM (2014)Google Scholar
39. 39.
Mitavskiy, B., Rowe, J., Cannings, C.: Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links. Int. J. Intell. Comput. Cybern. 2, 243–284 (2009)
40. 40.
Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization—Algorithms and Their Computational Complexity. Springer, Berlin (2010)
41. 41.
Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation-combining exploration and exploitation. In: Proceedings of Congress on Evolutionary Computation (CEC’09), pp. 1455–1462. IEEE (2009)Google Scholar
42. 42.
Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn. Springer, Berlin (2006)
43. 43.
Rudolph, G.: An evolutionary algorithm for integer programming. In: Proceedings of Parallel Problem Solving from Nature (PPSN’94), pp. 139–148. Springer (1994)Google Scholar
44. 44.
Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest paths problems. J. Math. Model. Algorithms 3, 349–366 (2004)
45. 45.
Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)
46. 46.
Zarges, C.: Rigorous runtime analysis of inversely fitness proportional mutation rates. In: Proceedings of Parallel Problem Solving from Nature (PPSN’08), Lecture Notes in Computer Science, vol. 5199, pp. 112–122. Springer (2008)Google Scholar
47. 47.
Zarges, C.: On the utility of the population size for inversely fitness proportional mutation rates. In: Proceedings of Foundations of Genetic Algorithms (FOGA’09), pp. 39–46. ACM (2009)Google Scholar