Advertisement

Algorithmica

, Volume 80, Issue 4, pp 1214–1277 | Cite as

Simultaneous Embedding: Edge Orderings, Relative Positions, Cutvertices

  • Thomas BläsiusEmail author
  • Annette Karrer
  • Ignaz Rutter
Article
  • 152 Downloads

Abstract

A simultaneous embedding (with fixed edges) of two graphs \(G^{\textcircled {1}}\) and \(G^{\textcircled {2}}\) with common graph \(G=G^{\textcircled {1}} \cap G^{\textcircled {2}}\) is a pair of planar drawings of \(G^{\textcircled {1}}\) and \(G^{\textcircled {2}}\) that coincide on G. It is an open question whether there is a polynomial-time algorithm that decides whether two graphs admit a simultaneous embedding (problem Sefe). In this paper, we present two results. First, a set of three linear-time preprocessing algorithms that remove certain substructures from a given Sefe instance, producing a set of equivalent Sefe instances without such substructures. The structures we can remove are (1) cutvertices of the union graph \(G^\cup = G^{\textcircled {1}} \cup G^{\textcircled {2}}\), (2) most separating pairs of \(G^\cup \), and (3) connected components of G that are biconnected but not a cycle. Second, we give an \(O(n^3)\)-time algorithm solving Sefe for instances with the following restriction. Let u be a pole of a P-node \(\mu \) in the SPQR-tree of a block of \(G^{\textcircled {1}}\) or \(G^{\textcircled {2}}\). Then at most three virtual edges of \(\mu \) may contain common edges incident to u. All algorithms extend to the sunflower case, i.e., to the case of more than two graphs pairwise intersecting in the same common graph.

Keywords

Simultaneous planarity Efficient algorithm Graph drawing 

Notes

Acknowledgements

We thank the anonymous reviewers for thoroughly reading an earlier version of this paper and for providing useful comments, which helped us to to improve the presentation of our paper.

References

  1. 1.
    Angelini, P., Battista, G.D., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability of two graphs whose intersection is a biconnected or a connected graph. J. Discrete Algorithms 14, 150–172 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Handbook of Graph Drawing and Visualization, pp. 349–381. Chapman and Hall/CRC (2013)Google Scholar
  4. 4.
    Bläsius, T., Rutter, I.: A new perspective on clustered planarity as a combinatorial embedding problem. Theor. Comput. Sci. 609, 306–315 (2016). doi: 10.1016/j.tcs.2015.10.011 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms 12(2), 16 (2016). doi: 10.1145/2738054 MathSciNetGoogle Scholar
  6. 6.
    Bläsius, T., Karrer, A., Rutter, I.: Simultaneous embedding: Edge orderings, relative positions, cutvertices. In: Wismath, S., Wolff, A. (eds.) Graph Drawing (GD’13), LNCS, vol. 8242, pp. 220–231. Springer (2013)Google Scholar
  7. 7.
    Bläsius, T., Rutter, I.: Disconnectivity and relative positions in simultaneous embeddings. Comput. Geom. Theory Appl. 48(6), 459–478 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph embeddings with fixed edges. In: Fomin, F.V. (ed.) Graph-Theoretic Concepts in Computer Science (WG’06), LNCS, vol. 4271, pp. 325–335. Springer (2006)Google Scholar
  12. 12.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) Graph Drawing (GD’00), LNCS, vol. 1984, pp. 77–90. Springer (2001)Google Scholar
  13. 13.
    Haeupler, B., Jampani, K., Lubiw, A.: Testing simultaneous planarity when the common graph is 2-connected. J. Graph Algorithms Appl. 17(3), 147–171 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jünger, M., Schulz, M.: Intersection graphs in simultaneous embedding with fixed edges. J. Graph Algorithms Appl. 13(2), 205–218 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kowalik, Ł., Kurowski, M.: Short path queries in planar graphs in constant time. In: Symposium on Theory of Computing (STOC’03), pp. 143–148. ACM (2003)Google Scholar
  17. 17.
    Schaefer, M.: Toward a theory of planarity: Hanani–Tutte and planarity variants. J. Graph Algorithms Appl. 17(4), 367–440 (2013). doi: 10.7155/jgaa.00298 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Hasso Plattner InstitutePotsdamGermany
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.TU EindhovenEindhovenThe Netherlands

Personalised recommendations