Advertisement

Algorithmica

, Volume 80, Issue 2, pp 652–667 | Cite as

New Bounds for the CLIQUE-GAP Problem Using Graph Decomposition Theory

  • Vladimir Braverman
  • Zaoxing Liu
  • Tejasvam Singh
  • N. V. Vinodchandran
  • Lin F. Yang
Article
  • 86 Downloads

Abstract

Halldórsson et al (ICALP proceedings of the 39th international colloquium conference on automata, languages, and programming, vol part I, Springer, pp 449–460, 2012) investigated the space complexity of the following problem CLIQUE-GAP(rs): given a graph stream G, distinguish whether \(\omega (G) \ge r\) or \(\omega (G) \le s\), where \(\omega (G)\) is the clique-number of G. In particular, they give matching upper and lower bounds for CLIQUE-GAP(rs) for any r and \(s =c\log (n)\), for some constant c. The space complexity of the CLIQUE-GAP problem for smaller values of s is left as an open question. In this paper, we answer this open question. Specifically, for any r and for \(s={\tilde{O}}(\log (n))\), we prove that the space complexity of CLIQUE-GAP problem is \({\tilde{\Theta }}(\frac{ms^2}{r ^2})\). Our lower bound is based on a new connection between graph decomposition theory (Chung et al in Studies in pure mathematics, Birkhäuser, Basel, pp 95–101, 1983; Chung in SIAM J Algebr Discrete Methods 2(1):1–12, 1981) and the multi-party set disjointness problem in communication complexity.

Keywords

Communication complexity Clique Streaming algorithm Graph decomposition Triangle counting 

References

  1. 1.
    Ahn, K.J., Guha, S.: Graph sparsification in the semi-streaming model. In: Proceedings of the 36th International Colloquium on Automata. Languages and Programming: Part II, pp. 328–338. Springer, ICALP (2009)Google Scholar
  2. 2.
    Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 594–598. ACM/SIAM (1998)Google Scholar
  3. 3.
    Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 20–29. ACM (1996)Google Scholar
  4. 4.
    Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to counting triangles in graphs. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 623–632. SODA, Society for Industrial and Applied Mathematics (2002)Google Scholar
  5. 5.
    Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Computing clustering coefficients in data streams. In: European Conference on Complex Systems (ECCS) (2006)Google Scholar
  6. 6.
    Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting triangles in data streams. In: Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 253–262. PODS, ACM (2006)Google Scholar
  7. 7.
    Buriol, L.S., Frahling, G., Leonardi, S., Sohler, C.: Estimating clustering indexes in data streams. In: ESA. Lecture Notes in Computer Science, vol. 4698, pp. 618–632. Springer (2007)Google Scholar
  8. 8.
    Buriol, L.S., Frahling, G., Leonardi, S., Spaccamela, A.M., Sohler, C.: Counting graph minors in data streams. Tech. rep, DELIS—Dynamically Evolving, Large-Scale Information Systems (2005)Google Scholar
  9. 9.
    Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-party communication complexity of set disjointness. In: IEEE Conference on Computational Complexity, pp. 107–117. IEEE Computer Society (2003)Google Scholar
  10. 10.
    Chung, F.: On the decomposition of graphs. SIAM J. Algebr. Discrete Methods 2(1), 1–12 (1981)CrossRefMATHGoogle Scholar
  11. 11.
    Chung, F., Erdős, P., Spencer, J.: On the decomposition of graphs into complete bipartite subgraphs. In: Studies in Pure Mathematics, pp. 95–101. Birkhäuser Basel (1983)Google Scholar
  12. 12.
    Cormode, G., Jowhari, H.: A second look at counting triangles in graph streams. Theor. Comput. Sci. 552, 44–51 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph streaming problems. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 714–723. ACM (2006)Google Scholar
  14. 14.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Goel, A., Kapralov, M., Khanna, S.: On the communication and streaming complexity of maximum bipartite matching. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 468–485. SODA, SIAM (2012)Google Scholar
  16. 16.
    Halldórsson, M.M., Sun, X., Szegedy, M., Wang, C.: Streaming and communication complexity of clique approximation. In: ICALP Proceedings of the 39th International Colloquium Conference on Automata, Languages, and Programming, vol. Part I, pp. 449–460. Springer (2012)Google Scholar
  17. 17.
    Italiano, G.F., Pighizzini, G., Sannella, D. (eds.): Mathematical Foundations of Computer Science 2015—40th International Symposium, MFCS 2015, Milan, Italy, August 24–28, 2015, Proceedings, Part II, Lecture Notes in Computer Science, vol. 9235. Springer (2015). doi: 10.1007/978-3-662-48054-0
  18. 18.
    Jha, M., Seshadhri, C., Pinar, A.: When a graph is not so simple: counting triangles in multigraph streams. CoRR. arXiv:1310.7665
  19. 19.
    Jowhari, H., Ghodsi, M.: New streaming algorithms for counting triangles in graphs. In: COCOON. Lecture Notes in Computer Science, vol. 3595, pp. 710–716. Springer (2005)Google Scholar
  20. 20.
    Kapralov, M., Khanna, S., Sudan, M.: Streaming lower bounds for approximating MAX-CUT. CoRR (2014). arXiv:1409.2138
  21. 21.
    Kutzkov, K., Pagh, R.: On the streaming complexity of computing local clustering coefficients. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 677–686. WSDM, ACM (2013)Google Scholar
  22. 22.
    Manjunath, M., Mehlhorn, K., Panagiotou, K., Sun, H.: Approximate counting of cycles in streams. In: Proceedings of the 19th European Conference on Algorithms, pp. 677–688. ESA, Springer (2011)Google Scholar
  23. 23.
    McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20 (2014)CrossRefGoogle Scholar
  24. 24.
    McGregor, A., Vorotnikova, S., Vu, H.T.: Better algorithms for counting triangles in data streams. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 401–411. PODS ’16, ACM, New York (2016). doi: 10.1145/2902251.2902283
  25. 25.
    Pavan, A., Tangwongsan, K., Tirthapura, S., Wu, K.L.: Counting and sampling triangles from a graph stream. Proc. VLDB Endow. 6(14), 1870–1881 (2013)CrossRefGoogle Scholar
  26. 26.
    Tur\(\acute{a}\)n, P.: On an extremal problem in graph theory. Matematikai \(\acute{e}\) s Fizikai Lapok (1941)Google Scholar
  27. 27.
    Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph. CoRR. arXiv:1111.4503

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Johns Hopkins UniversityBaltimoreUSA
  2. 2.University of Nebraska–LincolnLincolnUSA

Personalised recommendations