, Volume 80, Issue 6, pp 1964–1982 | Cite as

Trees, Paths, Stars, Caterpillars and Spiders



For any \(k \ge 2\), deciding whether the linear arboricity, star arboricity, caterpillar arboricity, spider arboricity, track number, unit track number, and subchromatic index, respectively, of a bipartite graph are at most k are all NP-complete.


Graph decomposition Arboricity Interval number Subcoloring NP-hardness 


  1. 1.
    Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs III: cyclic and acyclic invariants. Math. Slovoca 30, 405–417 (1980)MathSciNetMATHGoogle Scholar
  2. 2.
    Albertson, M.O., Jamison, R.E., Hedetniemi, S.T., Locke, S.C.: The subchromatic number of a graph. Discret. Math. 74, 33–49 (1989)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alon, N.: The linear arboricity of graphs. Isr. J. Math. 62, 311–325 (1988)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Alon, N., Teague, V.J., Wormald, N.C.: Linear arboricity and linear \(k\)-arboricity of regular graphs. Graphs Comb. 17, 11–16 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cai, L., Ellis, J.A.: NP-completeness of edge-colouring some restricted graphs. Discret. Appl. Math. 30, 15–27 (1991)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cameron, P.J.: Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  7. 7.
    Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in \(O(E\log D)\) time. Combinatorica 21, 5–12 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cygan, M., Hou, J., Kowalik, Ł., Lužar, B., Wu, J.: A planar linear arboricity conjecture. J. Graph Theory 69, 403–425 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Emden-Weinert, T., Hougardy, S., Kreuter, B.: Uniquely colourable graphs and the hardness of colouring graphs of large girth. Comb. Probab. Comput. 7, 375–386 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Farrugia, A.: Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard. Electron. J. Comb. 11, R46 (2004)MathSciNetMATHGoogle Scholar
  11. 11.
    Fiala, J., Jansen, K., Le, V.B., Seidel, E.: Graph subcolorings: complexity and algorithms. SIAM J. Discret. Math. 16, 635–650 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fiala, J., Le, V.B.: The subchromatic index of graphs. Tatra Mt. Math. Publ. 36, 129–146 (2007)MathSciNetMATHGoogle Scholar
  13. 13.
    Gabow, H.N., Westermann, H.H.: Forests, frames, and games: algorithms for matroid sums and applications. Algorithmica 7, 465–497 (1992)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gimbel, J., Hartman, C.: Subcolorings and the subchromatic number of a graph. Discret. Math. 272, 139–154 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gonçalves, D.: Caterpillar arboricity of planar graphs. Discret. Math. 307, 2112–2121 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gonçalves, D., Ochem, P.: On star and caterpillar arboricity. Discret. Math. 309, 3694–3702 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hakimi, S.L., Mitchem, J., Schmeichel, E.: Star arboricity of graphs. Discret. Math. 149, 93–98 (1996)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720 (1981)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Jiang, M.: Recognizing \(d\)-interval graphs and \(d\)-track interval graphs. Algorithmica 66, 541–563 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted Steiner trees. Journal of Algorithms 19, 104–115 (1995)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Leven, D., Galil, Z.: NP completeness of finding the chromatic index of regular graphs. J. Algorithms 4, 35–44 (1983)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lovász, L.: Coverings and colorings of hypergraphs. In: Proceedings of the 4th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 3–12. Utilitas Mathematica Publishing, Winnipeg (1973)Google Scholar
  23. 23.
    Maffray, F., Preissmann, M.: On the NP-completeness of the \(k\)-colorability problem for triangle-free graphs. Discret. Math. 162, 313–317 (1996)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Nash-Williams, C.StJ A.: Decomposition of finite graphs into forests. J. Lond. Math. Soc. 39, 12 (1964)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Peroche, B.: Complexité de l’arboricité linéaire d’un graphe. RAIRO Recherche Operationelle 16, 125–129 (1982)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Shermer, T.C.: On rectangle visibility graphs III: external visibility and complexity. In: Proceedings of the 8th Canadian Conference on Computational Geometry (CCCG’96), pp. 234–239 (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUtah State UniversityLoganUSA

Personalised recommendations