Advertisement

Algorithmica

, Volume 80, Issue 1, pp 29–47 | Cite as

Induced Minor Free Graphs: Isomorphism and Clique-Width

  • Rémy Belmonte
  • Yota Otachi
  • Pascal  Schweitzer
Article
  • 418 Downloads

Abstract

Given two graphs G and H, we say that G contains H as an induced minor if a graph isomorphic to H can be obtained from G by a sequence of vertex deletions and edge contractions. We study the complexity of Graph Isomorphism on graphs that exclude a fixed graph as an induced minor. More precisely, we determine for every graph H that Graph Isomorphism is polynomial-time solvable on H-induced-minor-free graphs or that it is GI-complete. Additionally, we classify those graphs H for which H-induced-minor-free graphs have bounded clique-width. These two results complement similar dichotomies for graphs that exclude a fixed graph as an induced subgraph, minor, or subgraph.

Keywords

Induced minor Graph isomorphism Clique-width 

Notes

Acknowledgments

The authors thank the anonymous reviewers for constructive comments that improved the presentation of the paper.

References

  1. 1.
    Babai, L.: Graph isomorphism in quasipolynomial time. CoRR, abs/1512.03547 (To appear in STOC 2016) (2015)Google Scholar
  2. 2.
    Błasiok, J., Kamiński, M., Raymond, J.-F., Trunck, T.: Induced minors and well-quasi-ordering. Electr. Notes Discrete Math. 49, 197–201 (2015)CrossRefMATHGoogle Scholar
  3. 3.
    Boliac, R., Lozin, V.V.: On the clique-width of graphs in hereditary classes. In: ISAAC 2002, vol. 2518 of Lecture Notes in Computer Science, pp. 44–54 (2002)Google Scholar
  4. 4.
    Booth, K.S., Colbourn, C.J.: Problems polynomially equivalent to graph isomorphism. Technical Report CS-77-04, Computer Science Department, University of Waterloo (1979)Google Scholar
  5. 5.
    Colbourn, C.J.: On testing isomorphism of permutation graphs. Networks 11(1), 13–21 (1981)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Courcelle, B.: Clique-width and edge contraction. Inf. Process. Lett. 114, 42–44 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101, 77–114 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dabrowski, K.K., Paulusma, D.: Classifying the clique-width of \(H\)-free bipartite graphs. Discrete Appl. Math. 200, 43–51 (2016)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dabrowski, K.K., Paulusma, D.: Clique-width of graph classes defined by two forbidden induced subgraphs. Comput. J. 59, 650–666 (2016)CrossRefGoogle Scholar
  12. 12.
    Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph isomorphism is in log-space. In: IEEE Conference on Computational Complexity, pp. 203–214 (2009)Google Scholar
  13. 13.
    de Ridder, H.N., et al.: ISGCI: information system on graph classes and their inclusions—list of small graphs. http://graphclasses.org/smallgraphs.html
  14. 14.
    Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and related problems. Algorithmica 13, 266–282 (1995)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fomin, F.V., Golovach, P.A., Thilikos, D.M.: Contraction bidimensionality: the accurate picture. In: ESA 2009, vol. 5757 of Lecture Notes in Computer Science, pp. 706–717 (2009)Google Scholar
  16. 16.
    Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. Int. J. Found. Comput. Sci. 11(3), 423–443 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with excluded topological subgraphs. SIAM J. Comput. 44(1), 114–159 (2015)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Grohe, M., Schweitzer, P.: Isomorphism testing for graphs of bounded rank width. In: Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1010–1029. IEEE (2015)Google Scholar
  19. 19.
    Hlinený, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2008)CrossRefGoogle Scholar
  20. 20.
    Hopcroft, J.E., Tarjan, R.E.: Isomorphism of Planar Graphs. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 131–152. Springer, New York (1972)Google Scholar
  21. 21.
    Kamiński, M., Lozin, V.V., Milanič, M.: Recent developments on graphs of bounded clique-width. Discrete Appl. Math. 157, 2747–2761 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set number. In SWAT 2010, vol. 6139 of Lecture Notes in Computer Science, pp. 81–92 (2010)Google Scholar
  23. 23.
    Kratsch, S., Schweitzer, P.: Graph isomorphism for graph classes characterized by two forbidden induced subgraphs. In WG 2012, vol. 7551 of Lecture Notes in Computer Science, pp. 34–45 (2012)Google Scholar
  24. 24.
    Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth. FOCS 2014, 186–195 (2014)MathSciNetMATHGoogle Scholar
  25. 25.
    Lozin, V.V., Rautenbach, D.: On the band-, tree- and clique-width of graphs with bounded vertex degree. SIAM J. Discrete Math. 18, 195–206 (2004)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lueker, G.S., Booth, K.S.: A linear time algorithm for deciding interval graph isomorphism. J. ACM 26(2), 183–195 (1979)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Otachi, Y., Schweitzer, P.: Isomorphism on subgraph-closed graph classes: a complexity dichotomy and intermediate graph classes. In ISAAC 2013, vol. 8283 of Lecture Notes in Computer Science, pp. 111–118 (2013)Google Scholar
  28. 28.
    Otachi, Y., Schweitzer, P.: Reduction techniques for graph isomorphism in the context of width parameters. In SWAT 2014, vol. 8503 of Lecture Notes in Computer Science, pp. 368–379 (2014)Google Scholar
  29. 29.
    Oum, S.: Rank-width and vertex-minors. J. Comb. Theory, Ser. B 95(1), 79–100 (2005)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96(4), 514–528 (2006)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Ponomarenko, I.N.: The isomorphism problem for classes of graphs closed under contraction. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta 174:147–177 (Russian). English translation in. J. Sov. Math. 55(1991), 1621–1643 (1988)Google Scholar
  32. 32.
    Schöning, U.: Graph isomorphism is in the low hierarchy. J. Comput. Syst. Sci. 37(3), 312–323 (1988)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Schweitzer, P.: Towards an isomorphism dichotomy for hereditary graph classes. In STACS 2015, vol. 30 of LIPIcs, pp. 689–702 (2015)Google Scholar
  34. 34.
    van ’t Hof, P., Kamiński, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On graph contractions and induced minors. Discrete Appl. Math. 160, 799–809 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rémy Belmonte
    • 1
  • Yota Otachi
    • 2
  • Pascal  Schweitzer
    • 3
  1. 1.University of Electro-CommunicationsTokyoJapan
  2. 2.Japan Advanced Institute of Science and TechnologyIshikawaJapan
  3. 3.RWTH Aachen UniversityAachenGermany

Personalised recommendations