Algorithmica

, Volume 79, Issue 3, pp 925–940 | Cite as

When Patrolmen Become Corrupted: Monitoring a Graph Using Faulty Mobile Robots

  • Jurek Czyzowicz
  • Leszek Gasieniec
  • Adrian Kosowski
  • Evangelos Kranakis
  • Danny Krizanc
  • Najmeh Taleb
Article

Abstract

A team of k mobile robots is deployed on a weighted graph whose edge weights represent distances. The robots move perpetually along the domain, represented by all points belonging to the graph edges, without exceeding their maximum speed. The robots need to patrol the graph by regularly visiting all points of the domain. In this paper, we consider a team of robots (patrolmen), at most f of which may be unreliable, i.e., they fail to comply with their patrolling duties. What algorithm should be followed so as to minimize the maximum time between successive visits of every edge point by a reliable patrolman? The corresponding measure of efficiency of patrolling called idleness has been widely accepted in the robotics literature. We extend it to the case of untrusted patrolmen; we denote by \({\mathfrak {I}}_k^f (G)\) the maximum time that a point of the domain may remain unvisited by reliable patrolmen. The objective is to find patrolling strategies minimizing \({\mathfrak {I}}_k^f (G)\). We investigate this problem for various classes of graphs. We design optimal algorithms for line segments, which turn out to be surprisingly different from strategies for related patrolling problems proposed in the literature. We then use these results to study general graphs. For Eulerian graphs G, we give an optimal patrolling strategy with idleness \({\mathfrak {I}}^f_k(G) = (f+1) |E|{/}k\), where |E| is the sum of the lengths of the edges of G. Further, we show the hardness of the problem of computing the idle time for three robots, at most one of which is faulty, by reduction from 3-edge-coloring of cubic graphs—a known NP-hard problem. A byproduct of our proof is the investigation of classes of graphs minimizing idle time (with respect to the total length of edges); an example of such a class is known in the literature under the name of Kotzig graphs.

Keywords

Mobile robot Fault tolerant Patrolling Idleness Kotzig graphs 

References

  1. 1.
    Agmon, N., Kraus, S., Kaminka, G.A.: Multi-robot perimeter patrol in adversarial settings. In: ICRA, pp. 2339–2345 (2008)Google Scholar
  2. 2.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alpern, S., Morton, A., Papadaki, K.: Optimizing Randomized Patrols. Operational Research Group, London School of Economics and Political Science, Working Paper LSEOR 09.116 (2009)Google Scholar
  4. 4.
    Alpern, S., Morton, A., Papadaki, K.: Patrolling games. Oper. Res. 59(5), 1246–1257 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Amigoni, F., Basilico, N., Gatti, N., Saporiti, A., Troiani, S.: Moving game theoretical patrolling strategies from theory to practice: An USARSim simulation. In: ICRA, pp. 426–431 (2010)Google Scholar
  6. 6.
    Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: IAT, pp. 302–308 (2004)Google Scholar
  7. 7.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 41(1), 1516–1528 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: ESA, vol. 2011, pp. 701–712 (2011)Google Scholar
  10. 10.
    Défago, X., Gradinariu, M., Messika, S., Raïpin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. In: International Symposium on Distributed Computing, pp. 46–60 (2006)Google Scholar
  11. 11.
    Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1:1–1:28 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dumitrescu, A., Ghosh, A., Tóth, C.D.: On fence patrolling by mobile agents. Electr. J. Comb. 21(3), P3.4 (2014)MathSciNetMATHGoogle Scholar
  13. 13.
    Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency constraints. Ann. Math. Artif. Intell. 57(3–4), 293–320 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Elmaliach, Y., Shiloni, A., Kaminka, G.A.: A realistic model of frequency-based multi-robot polyline patrolling. In: AAMAS, vol. 1, pp. 63–70 (2008)Google Scholar
  15. 15.
    Elor, Y., Bruckstein, A.M.: Autonomous multi-agent cycle based patrolling. In: ANTS Conference, pp. 119–130 (2010)Google Scholar
  16. 16.
    Garey, M., Johnson, D.: Computers and Intractability, vol. 174. Freeman, San Francisco (1979)MATHGoogle Scholar
  17. 17.
    Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple robots. Robot. Auton. Syst. 56, 1102–1114 (2008)CrossRefGoogle Scholar
  18. 18.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. Distrib. Comput. 28(2), 147–154 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kotzig, A.: Hamilton graphs and Hamilton circuits. In Proceedings of the Symposium of Smolenice in Theory of Graphs and Its Applications, pp. 63–82. Publ. House Czechoslovak Acad. Sci. (1964)Google Scholar
  22. 22.
    Machado, A., Ramalho, G., Zucker, J.-D., Drogoul, A.: Multi-agent patrolling: an empirical analysis of alternative architectures. In: MABS, pp. 155–170 (2002)Google Scholar
  23. 23.
    Marino, A., Parker, L., Antonelli, G., Caccavale, F., Chiaverini, S.: A fault-tolerant modular control approach to multi-robot perimeter patrol. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 735–740 (2009)Google Scholar
  24. 24.
    Marino, A., Parker, L.E., Antonelli, G., Caccavale, F.: Behavioral control for multi-robot perimeter patrol: a finite state automata approach. In: ICRA, pp. 831–836 (2009)Google Scholar
  25. 25.
    Park, J., Kim, H.: Dihamiltonian decomposition of regular graphs with degree three. In: International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 240–249. Springer, Berlin (1999)Google Scholar
  26. 26.
    Pasqualetti, F., Franchi, A., Bullo, F.: On optimal cooperative patrolling. In: 49th IEEE Conference on Decision and Control (CDC), pp. 7153–7158 (2010)Google Scholar
  27. 27.
    Portugal, D., Rocha, R.P.: A survey on multi-robot patrolling algorithms. In: Proceedings of the 2nd International Conference on Technological Innovation for Sustainability (IFIP WG 5.5), Costa de Caparica, Portugal, February 21–23, pp. 139–146 (2011)Google Scholar
  28. 28.
    Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. In: International Conference on Principles of Distributed Systems, pp. 333–349 (2006)Google Scholar
  29. 29.
    Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)CrossRefGoogle Scholar
  30. 30.
    Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Leszek Gasieniec
    • 2
  • Adrian Kosowski
    • 3
  • Evangelos Kranakis
    • 4
  • Danny Krizanc
    • 5
  • Najmeh Taleb
    • 4
  1. 1.Départment d’informatiqueUniv. du Québec en OutaouaisGatineauCanada
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  3. 3.IRIFInria and Université Paris DiderotParisFrance
  4. 4.School of Computer ScienceCarleton UniversityOttawaCanada
  5. 5.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA

Personalised recommendations