Algorithmica

, Volume 79, Issue 4, pp 987–1013 | Cite as

On the Information Ratio of Non-perfect Secret Sharing Schemes

  • Oriol Farràs
  • Torben Brandt Hansen
  • Tarik Kaced
  • Carles Padró
Article

Abstract

A secret sharing scheme is non-perfect if some subsets of players that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes and the construction of efficient linear non-perfect secret sharing schemes. To this end, we extend the known connections between matroids, polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information on the secret value that is obtained by each subset of players. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, access functions whose values depend only on the number of players, generalize the threshold access structures. The optimal information ratio of the uniform access functions with rational values has been determined by Yoshida, Fujiwara and Fossorier. By using the tools that are described in our work, we provide a much simpler proof of that result and we extend it to access functions with real values.

Keywords

Secret sharing Non-perfect secret sharing Access function Information ratio Polymatroid 

References

  1. 1.
    Beimel, A.: Secret-sharing schemes: a survey. In: Coding and Cryptology, Third International Workshop, IWCC 2011, Lecture Notes in Computer Science, vol. 6639, pp. 11–46 (2011)Google Scholar
  2. 2.
    Beimel, A., Ben-Efraim, A., Padró, C., Tyomkin, I.: Multi-linear secret-sharing schemes. In: Theory of Cryptography, TCC 2014, Lecture Notes in Computer Science, vol. 8349, pp. 394–418 (2014)Google Scholar
  3. 3.
    Beimel, A., Farràs, O., Mintz, Y.: Secret sharing schemes for very dense graphs. J. Cryptol. 29(2), 336–362 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beimel, A., Livne, N., Padró, C., Matroids can be far from ideal secret sharing. In: Theory of Cryptography, TCC 2008, Lecture Notes in Computer Science, vol. 4948, pp. 194–212 (2008)Google Scholar
  5. 5.
    Beimel, A., Orlov, I.: Secret sharing and non-shannon information inequalities. IEEE Trans. Inform. Theory 57, 5634–5649 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Advances in Cryptology, CRYPTO’88, Lecture Notes in Computer Science, vol. 403, pp. 27–35 (1990)Google Scholar
  7. 7.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the ACM STOC’88, pp. 1–10 (1988)Google Scholar
  8. 8.
    Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conference Proceedings, vol. 48, pp. 313–317 (1979)Google Scholar
  9. 9.
    Blakley, G.R., Meadows, C.: Security of Ramp Schemes. In: Advances in Cryptology, CRYPTO’84, Lecture Notes in Computer Science, vol. 196, pp. 242–268 (1985)Google Scholar
  10. 10.
    Bogdanov, A., Guo, S., Komargodski, I.: Threshold secret sharing requires a linear size alphabet. In: Electronic Colloquium on Computational Complexity, Report No. 131 (2016)Google Scholar
  11. 11.
    Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Math. Combin. Comput. 9, 105–113 (1989)MathSciNetMATHGoogle Scholar
  12. 12.
    Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. Cryptol. 4, 123–134 (1991)MATHGoogle Scholar
  13. 13.
    Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares for secret sharing schemes. J. Cryptol. 6, 157–167 (1993)CrossRefMATHGoogle Scholar
  14. 14.
    Cascudo, I., Cramer, R., Xing, C.: Bounds on the threshold gap in secret sharing and its applications. IEEE Trans. Inf. Theory 59, 5600–5612 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Chaum, D., Crépeau, C., Damgård, I.: Multi-party unconditionally secure protocols. In: Proceedings of the ACM STOC’88, pp. 11–19 (1988)Google Scholar
  16. 16.
    Chen, H., Cramer, R., de Haan, R., Cascudo Pueyo, I.: Strongly multiplicative ramp schemes, from high degree rational points on curves. In: Advances in Cryptology, EUROCRYPT 2008, Lecture Notes in Computer Science, vol. 4965, pp. 451–470 (2008)Google Scholar
  17. 17.
    Chen, Q., Yeung, R.W.: Two-Partition-Symmetrical Entropy Function Regions. ITW 1–5 (2013)Google Scholar
  18. 18.
    Cook, S.A., Pitassi, T., Robere, R., Rossman, B.: Exponential lower bounds for monotone span programs. In: Electronic Colloquium on Computational Complexity, Report No.64 (2016)Google Scholar
  19. 19.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)MATHGoogle Scholar
  20. 20.
    Cramer, R., Damgård, I., de Haan, R.: Atomic secure multi-party multiplication with low communication. In: Advances in Cryptology, EUROCRYPT 2008, Lecture Notes in Computer Science, vol. 4515, pp. 329–346 (2007)Google Scholar
  21. 21.
    Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Advances in Cryptology, EUROCRYPT 2000, Lecture Notes in Computer Science, vol. 1807, pp. 316–334 (2000)Google Scholar
  22. 22.
    Csirmaz, L.: The size of a share must be large. J. Cryptol. 10, 223–231 (1997)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Csirmaz, L., Tardos, G.: Optimal information rate of secret sharing schemes on trees. IEEE Trans. Inform. Theory 59, 2527–2630 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Desmedt, Y.: Threshold cryptography. Euro. Trans. Telecommun. 5, 449–457 (1994)CrossRefGoogle Scholar
  25. 25.
    Farràs, O.: Recent advances in non-perfect secret sharing schemes. In: Conference on Computability in Europe, CiE 2016. Lecture Notes in Computer Science, vol. 9709, pp. 89–98 (2016)Google Scholar
  26. 26.
    Farràs, O., Hansen, T., Kaced, T., Padró, C.: Optimal non-perfect uniform secret sharing schemes. In: Advances in Cryptology, CRYPTO 2014, Lecture Notes in Computer Science, vol. 8617, pp. 217–234 (2014)Google Scholar
  27. 27.
    Farràs, O., Martín, S., Padró, C.: A note on ideal non-perfect secret sharing schemes. Cryptology ePrint Archive 2016/348 (2016)Google Scholar
  28. 28.
    Farràs, O., Metcalf-Burton, J.R., Padró, C., Vázquez, L.: On the optimization of bipartite secret sharing schemes. Des. Codes Cryptogr. 63, 255–271 (2012)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Farràs, O., Padró, C.: Extending Brickell–Davenport theorem to non-perfect secret sharing schemes. Des. Codes Cryptogr. 74(2), 495–510 (2015)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Franklin, M., Yung, M.: Communication Complexity of Secure Computation, STOC 1992, pp. 699–710 (1992)Google Scholar
  31. 31.
    Fujishige, S.: Polymatroidal dependence structure of a set of random variables. Inf. Control 39, 55–72 (1978)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Fujishige, S.: Entropy functions and polymatroids–combinatorial structures in information theory. Electron. Comm. Jpn. 61, 14–18 (1978)MathSciNetGoogle Scholar
  33. 33.
    Ishai, Y., Kushilevitz, E., Strulovich, O.: Lossy Chains and Fractional Secret Sharing. In: STACS 2013, LIPICS, vol. 20, pp. 160–171 (2013)Google Scholar
  34. 34.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing any access structure. In: Proceedings of the IEEE Globecom’87, pp. 99–102 (1987)Google Scholar
  35. 35.
    Jackson, W.-A., Martin, K.M.: Geometric secret sharing schemes and their duals. Des. Codes Cryptogr. 4, 83–95 (1994)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Kaced, T.: Almost-perfect secret sharing. In: Proceedings of 2011 IEEE International Symposium on Information Theory, ISIT 2011, pp. 1603–1607 (2011). Full version available at arXiv:1103.2544
  37. 37.
    Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Trans. Inform. Theory 29, 35–41 (1983)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Kothari, S.C.: Generalized linear threshold scheme. In: Advances in Cryptology, CRYPTO’84, Lecture Notes in Computer Science, vol. 196, pp. 231–241 (1985)Google Scholar
  39. 39.
    Kurosawa, K., Okada, K., Sakano, K., Ogata, W., Tsujii, S.: Nonperfect secret sharing schemes matroids. In: Advances in Cryptology, EUROCRYPT 1993, Lecture Notes in Computer Science, vol. 765, pp. 126–141 (1994)Google Scholar
  40. 40.
    Martí-Farré, J., Padró, C.: On secret sharing schemes matroids and polymatroids. J. Math. Cryptol. 4, 95–120 (2010)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Martín, S., Padró, C., Yang, A.: Secret sharing inequalities, rank, inequalities, information. In: Advances in Cryptology, CRYPTO 2013, Lecture Notes in Computer Science, vol. 8043, pp. 277–288 (2012)Google Scholar
  42. 42.
    Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the Sixth Joint Swedish–Russian Workshop on Information Theory, Molle, Sweden, August 1993, pp. 269–279 (1993)Google Scholar
  43. 43.
    McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed–Solomon codes. Commun. ACM 24, 583–584 (1981)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Ogata, W., Kurosawa, K., Tsujii, S.: Nonperfect secret sharing schemes. In: Advances in Cryptology, Auscrypt 92, Lecture Notes in Computer Science, vol. 718, pp. 56–66 (1993)Google Scholar
  45. 45.
    Okada, K., Kurosawa, K.: Lower bound on the size of shares of nonperfect secret sharing schemes. In: Advances in Cryptology, Asiacrypt 94, Lecture Notes in Computer Science, vol. 917, pp. 33–41 (1995)Google Scholar
  46. 46.
    Oxley, J.G.: Matroid Theory. The Clarendon Press, New York (1992)MATHGoogle Scholar
  47. 47.
    Padró, C.: Lecture Notes in Secret Sharing. Cryptology ePrint Archive 2012/674Google Scholar
  48. 48.
    Padró, C., Vázquez, L., Yang, A.: Finding lower bounds on the complexity of secret sharing schemes by linear programming. Discrete Appl. Math. 161, 1072–1084 (2013)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Paillier, P.: On ideal non-perfect secret sharing schemes. In: Security Protocols, 5th International Workshop, Lecture Notes in Computer Science, vol. 1361, pp. 207–216 (1998)Google Scholar
  50. 50.
    Schrijver, A.: Combinatorial Optimization Polyhedra and Efficiency. Springer, Berlin (2003)MATHGoogle Scholar
  51. 51.
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)MATHGoogle Scholar
  53. 53.
    Yoshida, M., Fujiwara, T.: Secure construction for nonlinear function threshold ramp secret sharing. In: IEEE International Symposium on Information Theory, ISIT 2007, pp. 1041–1045 (2007)Google Scholar
  54. 54.
    Yoshida, M., Fujiwara, T., Fossorier, M.: Optimum general threshold secret sharing. In: Security, Information Theoretic, ICITS 2012, Lecture Notes in Computer Science, vol. 7412, pp. 187–204 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Universitat Rovira i VirgiliTarragonaSpain
  2. 2.Royal HollowayUniversity of LondonLondonUK
  3. 3.LACL, UPECUniversité de Paris-EstParisFrance
  4. 4.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations