Algorithmica

, Volume 79, Issue 2, pp 598–623 | Cite as

On the Value of Job Migration in Online Makespan Minimization

Article
  • 119 Downloads

Abstract

Makespan minimization on identical parallel machines is a classical scheduling problem. We consider the online scenario where a sequence of n jobs has to be scheduled non-preemptively on m machines so as to minimize the maximum completion time of any job. The best competitive ratio that can be achieved by deterministic online algorithms is in the range [1.88, 1.9201]. Currently no randomized online algorithm with a smaller competitiveness is known, for general m. In this paper we explore the power of job migration, i.e. an online scheduler is allowed to perform a limited number of job reassignments. Migration is a common technique used in theory and practice to balance load in parallel processing environments. As our main result we settle the performance that can be achieved by deterministic online algorithms. We develop an algorithm that is \(\alpha _m\)-competitive, for any \(m\ge 2\), where \(\alpha _m\) is the solution of a certain equation. For \(m=2\), \(\alpha _2 = 4/3\) and \(\lim _{m\rightarrow \infty } \alpha _m = W_{-1}(-1/e^2)/(1+ W_{-1}(-1/e^2)) \approx 1.4659\). Here \(W_{-1}\) is the lower branch of the Lambert W function. For \(m\ge 11\), the algorithm uses at most 7m migration operations. For smaller m, 8m to 10m operations may be performed. We complement this result by a matching lower bound: No online algorithm that uses o(n) job migrations can achieve a competitive ratio smaller than \(\alpha _m\). We finally trade performance for migrations. We give a family of algorithms that is c-competitive, for any \(5/3\le c \le 2\). For \(c= 5/3\), the strategy uses at most 4m job migrations. For \(c=1.75\), at most 2.5m migrations are used.

Keywords

Scheduling Makespan minimization Online algorithm Competitive analysis Job migration 

References

  1. 1.
    Aggarwal, G., Motwani, R., Zhu, A.: The load rebalancing problem. J. Algorithms 60(1), 42–59 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29, 459–473 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bartal, Y., Karloff, H., Rabani, Y.: A better lower bound for on-line scheduling. Inf. Process. Lett. 50, 113–116 (1994)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient scheduling problem. J. Comput. Syst. Sci. 51, 359–366 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cesáro, E.: Sur la série harmonique. Nouvelles Ann. de Math. 3e Sér. 4, 295–296 (1885)MATHGoogle Scholar
  6. 6.
    Chen, B., van Vliet, A., Woeginger, G.J.: A lower bound for randomized on-line scheduling algorithms. Inf. Process. Lett. 51, 219–222 (1994)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen, B., van Vliet, A., Woeginger, G.J.: A optimal algorithm for preemptive online scheduling. Oper. Res. Lett. 18, 127–131 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Englert, M., Özmen, D., Westermann, M.: The power of reordering for online minimum makespan scheduling. SIAM J. Comput. 43(3), 1220–1237 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Faigle, U., Kern, W., Turan, G.: On the performance of on-line algorithms for partition problems. Acta Cybern. 9, 107–119 (1989)MathSciNetMATHGoogle Scholar
  10. 10.
    Fleischer, R., Wahl, M.: Online scheduling revisited. J. Sched. 3, 343–353 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Galambos, G., Woeginger, G.: An on-line scheduling heuristic with better worst case ratio than Graham’s list scheduling. SIAM J. Comput. 22, 349–355 (1993)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Graham, R.L.: Bounds for certain multi-processing anomalies. Bell Syst. Tech. J. 45, 1563–1581 (1966)CrossRefMATHGoogle Scholar
  13. 13.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17(2), 416–429 (1969)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer games. In: Proceedings of 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 564–565 (2000)Google Scholar
  15. 15.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34, 144–162 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling problem. J. Algorithms 20, 400–430 (1996)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Min, X., Liu, J., Wang, Y.: Optimal semi-online algorithms for scheduling problems with reassignment on two identical machines. Inf. Process. Lett. 111(9), 423–428 (2011)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Rudin, III, J.F.: Improved bounds for the on-line scheduling problem. Ph.D. Thesis. The University of Texas at Dallas, May 2001Google Scholar
  19. 19.
    Rudin III, J.F., Chandrasekaran, R.: Improved bounds for the online scheduling problem. SIAM J. Comput. 32, 717–735 (2003)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Math. Oper. Res. 34(2), 481–498 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sgall, J.: A lower bound for randomized on-line multiprocessor scheduling. Inf. Process. Lett. 63, 51–55 (1997)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Tan, Z., Yu, S.: Online scheduling with reassignment. Oper. Res. Lett. 36(2), 250–254 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28, 202–208 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceTechnische Universität MünchenGarchingGermany
  2. 2.Department of Computer ScienceHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations