, Volume 79, Issue 2, pp 568–597 | Cite as

Efficient Computation of Optimal Energy and Fractional Weighted Flow Trade-Off Schedules

  • Antonios Antoniadis
  • Neal Barcelo
  • Mario Consuegra
  • Peter KlingEmail author
  • Michael Nugent
  • Kirk Pruhs
  • Michele Scquizzato


We give a polynomial time algorithm to compute an optimal energy and fractional weighted flow trade-off schedule for a speed-scalable processor with discrete speeds. Our algorithm uses a geometric approach that is based on structural properties obtained from a primal–dual formulation of the problem.


Scheduling Flow time Energy efficiency Speed scaling Primal–dual 



The different authors (and thereby this work) were supported by: A fellowship within the Postdoc-Programme of the German Academic Exchange Service (A. Antoniadis); the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1247842 (N. Barcelo); the NSF Graduate Research Fellowship DGE-1038321 (M. Consuegra); the German Research Foundation (DFG) within the Collaborative Research Center On-The-Fly Computing (SFB 901) and by the Graduate School on Applied Network Science (P. Kling); by NSF Grants CCF-1115575, CNS-1253218, CCF-1421508, and an IBM Faculty Award (K. Pruhs); by a fellowship of Fondazione Ing. Aldo Gini, University of Padova, Italy (M. Scquizzato).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)CrossRefGoogle Scholar
  2. 2.
    Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms 3(4), Art. No. 49 (2007)Google Scholar
  3. 3.
    Andrew, L.L.H., Wierman, A., Tang, A.: Optimal speed scaling under arbitrary power functions. SIGMETRICS Perform. Eval. Rev. 37(2), 39–41 (2009)CrossRefGoogle Scholar
  4. 4.
    Antoniadis, A., Barcelo, N., Consuegra, M., Kling, P., Nugent, M., Pruhs, K., Scquizzato, M.: Efficient computation of optimal energy and fractional weighted flow trade-off schedules. In: Proceedings of the 31st Symposium on Theoretical Aspects of Computer Science (STACS), pp. 63–74 (2014)Google Scholar
  5. 5.
    Bansal, N., Chan, H.-L., Lam, T.W., Lee, L.-K.: Scheduling for speed bounded processors. In: Proceedings of the 35th International Conference on Automata, Languages, and Programming (ICALP), pp. 409–420 (2008)Google Scholar
  6. 6.
    Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM J. Comput. 39(4), 1294–1308 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power function. ACM Trans. Algorithms 9(2), Art No. 18 (2013)Google Scholar
  8. 8.
    Barcelo, N., Cole, D., Letsios, D., Nugent, M., Pruhs, K.: Optimal energy trade-off schedules. Sustain. Comput. Inf. Syst. 3, 207–217 (2013)Google Scholar
  9. 9.
    Barcelo, N., Kling, P., Nugent, M., Pruhs, K., Scquizzato, M.: On the complexity of speed scaling. In: Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science (MFCS), pp. 75–89 (2015)Google Scholar
  10. 10.
    Chan, S.-H., Lam, T.W., Lee, L.-K.: Non-clairvoyant speed scaling for weighted flow time. In: Proceedings of the 18th Annual European Symposium On Algorithms (ESA), Part I, pp. 23–35 (2010)Google Scholar
  11. 11.
    Devanur, N.R., Huang, Z.: Primal dual gives almost optimal energy efficient online algorithms. In: Proceedings of the 25th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA), pp. 1123–1140 (2014)Google Scholar
  12. 12.
    Labetoulle, J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Preemptive scheduling of uniform machines subject to release dates. In: Pulleyblank, H.R. (eds.) Progress in Combinatorial Optimization, pp. 245–261. Academic Press, London (1984)Google Scholar
  13. 13.
    Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Speed scaling functions for flow time scheduling based on active job count. In: Proceedings of the 16th Annual European Symposium on Algorithms (ESA), pp. 647–659 (2008)Google Scholar
  14. 14.
    Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying speed. In: Proceedings of the 40th International Conference on Automata, Languages, and Programming (ICALP)—Volume Part I, pp. 745–756 (2013)Google Scholar
  15. 15.
    Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best response for your erg. ACM Trans. Algorithms 4(3), Art. No. 38 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Max-Planck Institut für InformatikSaarbrückenGermany
  2. 2.Department of Computer ScienceUniversity of PittsburghPittsburghUSA
  3. 3.GoogleSeattleUSA
  4. 4.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  5. 5.Department of Computer ScienceUniversity of HoustonHoustonUSA

Personalised recommendations