Advertisement

Algorithmica

, Volume 76, Issue 4, pp 1097–1105 | Cite as

Biased Predecessor Search

  • Prosenjit Bose
  • Rolf Fagerberg
  • John Howat
  • Pat Morin
Article

Abstract

We consider the problem of performing predecessor searches in a bounded universe while achieving query times that depend on the distribution of queries. We obtain several data structures with various properties: in particular, we give data structures that achieve expected query times logarithmic in the entropy of the distribution of queries but with space bounded in terms of universe size, as well as data structures that use only linear space but with query times that are higher (but still sublinear) functions of the entropy. For these structures, the distribution is assumed to be known. We also consider individual query times on universe elements with general weights, as well as the case when the distribution is not known in advance.

Keywords

Data structures Predecessor search Biased search trees Entropy 

References

  1. 1.
    Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees. J. ACM, 54(3):Article 13 (2007)Google Scholar
  2. 2.
    Bădoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on comparison-based dynamic dictionaries. Theor. Comput. Sci. 382(2), 86–96 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related problems. J. Comput. Syst. Sci. 65(1), 38–72 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Belazzougui, D., Kaporis, A.C., Spirakis,P.G.: Random input helps searching predecessors. arXiv:1104.4353 (2011)
  5. 5.
    Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased search trees. SIAM J. Comput. 14(3), 545–568 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bose, P., Howat, J., Morin, A.: Distribution-sensitive dictionary with low space overhead. In Proceedings of the 11th International Symposium on Algorithms and Data Structures (WADS 2009), LNCS 5664, pp. 110–118 (2009)Google Scholar
  7. 7.
    Bose, P., Douïeb, K., Dujmović, V., Howat, J., Morin, P.: Fast local searches and updates in bounded universes. In Proceedings of the 22nd Canadian Conference on Computational Geometry (CCCG 2010), pp. 261–264 (2010)Google Scholar
  8. 8.
    Brodal, G.S., Markis, C., Sioutas, S., Tsakalidis, A., Tsichlas, K.: Optimal solutions for the temporal precedence problem. Algorithmica 33(4), 494–510 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Johnson, D.B.: A priority queue in which initialization and queue operations take \(O(\log \log D)\) time. Theory Comput. Syst. 15(1), 295–309 (1981)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.: Improved bounds for finger search on a RAM. In ESA ’03: Proceedings of the 11th Annual European Symposium on Algorithms, LNCS 2832, pp. 325–336 (2003)Google Scholar
  11. 11.
    Knuth, D.E.: Optimum binary search trees. Acta Inf. 1(1), 14–25 (1971)CrossRefzbMATHGoogle Scholar
  12. 12.
    Mehlhorn, K.: Nearly optimal binary search trees. Acta Inf. 5(4), 287–295 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mehlhorn, K., Näher, S.: Bounded ordered dictionaries in \(O(\log \log N)\) time and \(O(n)\) space. Inf. Process. Lett. 35(4), 183–189 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pătraşcu, M., Thorup, M.: Time–space trade-offs for predecessor search. In STOC ’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 232–240 (2006)Google Scholar
  15. 15.
    Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Inf. Process. Lett. 6(3), 80–82 (1977)CrossRefzbMATHGoogle Scholar
  17. 17.
    Willard, D.E.: Log-logarithmic worst-case range queries are possible in space \(\varTheta (\log \log N)\). Inf. Process. Lett. 17(2), 81–84 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Prosenjit Bose
    • 1
  • Rolf Fagerberg
    • 2
  • John Howat
    • 1
  • Pat Morin
    • 1
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada
  2. 2.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations