, Volume 76, Issue 4, pp 1139–1157 | Cite as

A Randomized \(\mathrm {O}(\log n)\)-Competitive Algorithm for the Online Connected Facility Location Problem

  • Mário César San Felice
  • David P. Williamson
  • Orlando Lee


The Connected Facility Location (CFL) is a network design problem that arises from a combination of the Uncapacitated Facility Location (FL) and the Steiner Tree (ST) problems. The Online Connected Facility Location problem (OCFL) is an online version of the CFL. San Felice et al. (2014) presented a randomized algorithm for the OCFL and proved that it is \(\mathrm {O}(\log ^2 n)\)-competitive, where n is the number of clients. That algorithm combines the sample-and-augment framework of Gupta, Kumar, Pál, and Roughgarden with previous algorithms for the Online Facility Location (OFL) and the Online Steiner Tree (OST) problems. In this paper we use a more precise analysis to show that the same algorithm is \(\mathrm {O}(\log n)\)-competitive. Since there is a lower bound of \(\mathrm {\Omega }(\log n)\) for this problem, our result achieves the best possible competitive ratio, asymptotically.


Online algorithms Competitive analysis Connected facility location Steiner tree Approximation algorithms  Randomized algorithms 



We would like to thank two anonymous referees whose suggestions and remarks greatly improved the presentation of this paper.


  1. 1.
    Bartal, Y., Fiat, A., Rabani, Y.: : Competitive Algorithms for Distributed Data Management. J. Comput. Syst. Sci. 51(3), 341–358. doi: 10.1006/jcss.1995.1073
  2. 2.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, New York, NY (1998)zbMATHGoogle Scholar
  3. 3.
    Buchbinder, N., Naor, J.S.: The design of competitive online algorithms via a primal-dual approach. Found. Trends Theor. Comput. Sci. 3, 93–263 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Byrka, J., Aardal, K.: An optimal bifactor approximation algorithm for the metric facility location problem. SIAM J. Comput. 39, 2212–2231 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Connected facility location via random facility sampling and core detouring. J. Comput. Syst. Sci. 76(8), 709–726 (2010).
  6. 6.
    Fotakis, D.: A primal-dual algorithm for online non-uniform facility location. J. Discrete Algorithms 5(1), 141–148 (2007). doi: 10.1016/j.jda.2006.03.001 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fotakis, D.: On the competitive ratio for online facility location. Algorithmica 50, 1–57 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fotakis, D.: Online and incremental algorithms for facility location. SIGACT News 42(1), 97–131 (2011). doi: 10.1145/1959045.1959065 CrossRefGoogle Scholar
  9. 9.
    Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing: Simpler and better approximation algorithms for network design. J. ACM 54(3) (2007). Article 11
  10. 10.
    Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design. Algorithmica 50, 98–119 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hasan, M.K., Jung, H., Chwa, K.Y.: Approximation algorithms for connected facility location. J. Comb. Optim. 16, 155–172 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM J. Discrete Math. 4(3), 369–384 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jung, H., Hasan, M.K., Chwa, K.Y.: A 6.55 factor primal-dual approximation algorithm for the connected facility location problem. J. Comb. Optim. 18, 258–271 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location problem. Inf. Comput. 222, 45–58 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility location problems. SIAM J. Comput. 36, 411–432 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Meyerson, A.: Online facility location. In: Foundations of Computer Science, 42nd IEEE Symposium, FOCS 2001, pp. 426–431 (2001).
  17. 17.
    Nagarajan, C., Williamson, D.P.: Offline and online facility leasing. Discrete Optim. 10(4), 361–370 (2013). doi: 10.1016/j.disopt.2013.10.001.
  18. 18.
    San Felice: M.C., Williamson, D.P., Lee, O.: The online connected facility location problem. In: Latin American Theoretical INformatics, 11th Symposium, LATIN 2014, no. 8392 in Lecture Notes in Computer Science, pp. 574–585. Springer, Berlin, Heidelberg (2014)Google Scholar
  19. 19.
    Shmoys, D.B.: Approximation algorithms for facility location problems. In: Approximation Algorithms for Combinatorial Optimization, 3rd International Workshop, APPROX 2000, no. 1913 in Lecture Notes in Computer Science, pp. 27–33. Springer, Berlin, Germany (2000).
  20. 20.
    Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. Algorithmica 40(4), 245–269 (2004)Google Scholar
  21. 21.
    Umboh, S.: Online network design algorithms via hierarchical decompositions. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2015). To appear. CoRR, abs/1410.4240Google Scholar
  22. 22.
    Vazirani, V.: Approximation Algorithms. Springer-Verlag Berlin Heidelberg, Germany (2003)CrossRefGoogle Scholar
  23. 23.
    Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, New York, NY (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mário César San Felice
    • 1
  • David P. Williamson
    • 2
  • Orlando Lee
    • 1
  1. 1.Institute of ComputingUnicampCampinasBrazil
  2. 2.School of Operations Research and Information EngineeringCornell UniversityIthacaUSA

Personalised recommendations