Advertisement

Algorithmica

, Volume 74, Issue 4, pp 1224–1266 | Cite as

Maximum Likelihood Analysis of the Ford–Fulkerson Method on Special Graphs

  • Ulrich LaubeEmail author
  • Markus E. Nebel
Article
  • 204 Downloads

Abstract

We present original average-case results on the performance of the Ford–Fulkerson maxflow algorithm on grid graphs (sparse) and random geometric graphs (dense). The analysis technique combines experiments with probability generating functions, stochastic context free grammars and an application of the maximum likelihood principle enabling us to make statements about the performance, where a purely theoretical approach has little chance of success. The methods lends itself to automation allowing us to study more variations of the Ford–Fulkerson maxflow algorithm with different graph search strategies and several elementary operations. A simple depth-first search enhanced with random iterators provides the best performance on grid graphs. For random geometric graphs a simple priority-first search with a maximum-capacity heuristic provides the best performance. Notable is the observation that randomization improves the performance even when the inputs are created from a random process.

Keywords

Analysis of algorithms Average case Generating functions  Ford–Fulkerson maxflow Maximum likelihood analysis Grid graphs  Random geometric graphs Stochastic context free grammars 

Notes

Acknowledgments

This work was inspired by the slides of two talks of R. Sedgewick on “The Role of the Scientific Method in Programing” [22] and “Putting the Science back into Computer Science” [21]. The authors would like to thank Sebastian Wild, Raphael Reitzig, Michael Holzhauser, Vasil Tenev and Florian Furbach for their ongoing effort in the development of MaLiJAn, the tool to do the maximum likelihood average case analysis of Java bytecode programs semi-automatically.

References

  1. 1.
    Aldrich, J.: R. A. Fisher and the making of maximum likelihood 1912–1922. Stat. Sci. 12(3), 162–176 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chandran, B., Hochbaum, D.: A computational study of the pseudoflow and push-relabel algorithms for the maximum flow problem. Oper. Res. 57, 358–376 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chi, T., Geman, S.: Estimation of probabilistic context-free grammars. Comput. Linguist. 24(2), 299–308 (1998)MathSciNetGoogle Scholar
  4. 4.
    Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Languages, pp. 118–161. North Holland, New York (1963)CrossRefGoogle Scholar
  5. 5.
    David, H.A., Nagaraja, H.N.: Order Statistics, 3rd edn. Wiley, New York (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dinic, E.A.: An algorithm for the solution of the max-flow problem with the polynomial estimation. Sov. Math. Dokl. 11, 1277–1280 (1970). Dokl. Akad. Nauk SSSR 194, 1970, no. 4 (in Russian)Google Scholar
  7. 7.
    Durstenfeld, R.: Algorithm 235: random permutation. Commun. ACM 7(7), 420 (1964)CrossRefGoogle Scholar
  8. 8.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)CrossRefzbMATHGoogle Scholar
  9. 9.
    Erdos, P., Rényi, A.: On random graphs I. Publ. Math. Debr. 6, 290–297 (1959)zbMATHGoogle Scholar
  10. 10.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)zbMATHGoogle Scholar
  12. 12.
    Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959)CrossRefzbMATHGoogle Scholar
  13. 13.
    Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. Assoc. Comput. Mach. 45, 753–782 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goldfab, D., Grigoriads, M.D.: A computational comparison of the dinic and network simplex methods for maximum flow. Ann. Oper. Res. 13, 83–123 (1988)MathSciNetGoogle Scholar
  15. 15.
    Knuth, D.E.: The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3rd edn. Addison Wesley, Reading (1997)zbMATHGoogle Scholar
  16. 16.
    Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd edn. Addison Wesley, Reading (1998)zbMATHGoogle Scholar
  17. 17.
    Laube, U., Nebel, M.E.: Maximum likelihood analysis of algorithms and data structures. Theor. Comput. Sci. 411(1), 188–212 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Motwani, R.: Average-case analysis of algorithms for matchings and related problems. J. ACM 41(6), 1329–1356 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Orlin, J.B.: Max flows in \({O}(nm)\) time, or better. In: STOC ’13: Proceedings of the 45th Annual ACM Symposium on Symposium on Theory of Computing, pp. 765–774. ACM, New York, NY, USA (2013)Google Scholar
  20. 20.
    Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Sedgewick, R.: Putting the science back into computer science. www.cs.princeton.edu/rs/talks/ScienceCS10.pdf (2010). Accessed 25 Nov 2014
  22. 22.
    Sedgewick, R.: The role of the scientific method in programming. www.cs.princeton.edu/rs/talks/ScienceCS.pdf (2010). Accessed 25 Nov 2014
  23. 23.
    Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison Wesley, Reading (2011)Google Scholar
  24. 24.
    Vizing, V.G.: The cartesian product of graphs. Vyčisl. Sistemy 9, 30–43 (1963)MathSciNetGoogle Scholar
  25. 25.
    Wild, S., Nebel, M., Reitzig, R., Laube, U.: Engineering java 7’s dual pivot quicksort using malijan. In: ALENEX 2013: Proceedings of the Meeting on Algorithm Engineering and Experiments, pp. 55–70. New Orleans, USA (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Fachbereich InformatikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations