Algorithmica

, Volume 76, Issue 3, pp 684–719 | Cite as

Zero-Information Protocols and Unambiguity in Arthur–Merlin Communication

Article

Abstract

We study whether information complexity can be used to attack the long-standing open problem of proving lower bounds against Arthur–Merlin (\({{\textsf {AM}}}\)) communication protocols. Our starting point is to show that—in contrast to plain randomized communication complexity—every boolean function admits an \({{\textsf {AM}}}\) communication protocol where on each yes-input, the distribution of Merlin’s proof leaks no information about the input and moreover, this proof is unique for each outcome of Arthur’s randomness. We posit that these two properties of zero information leakage and unambiguity on yes-inputs are interesting in their own right and worthy of investigation as new avenues toward \({{\textsf {AM}}}\). Zero-information protocols (\({{\textsf {ZAM}}}\)): Our basic \({{\textsf {ZAM}}}\) protocol uses exponential communication for some functions, and this raises the question of whether more efficient protocols exist. We prove that all functions in the classical space-bounded complexity classes \({{\textsf {NL}}}\) and \({\oplus }{{{\textsf {L}}}}\) have polynomial-communication \({{\textsf {ZAM}}}\) protocols. We also prove that \({{\textsf {ZAM}}}\) complexity is lower bounded by conondeterministic communication complexity. Unambiguous protocols (\({{\textsf {UAM}}}\)): Our most technically substantial result is a \(\Omega (n)\) lower bound on the \({{\textsf {UAM}}}\) complexity of the \({{\textsf {NP}}}\)-complete set-intersection function; the proof uses information complexity arguments in a new, indirect way and overcomes the “zero-information barrier” described above. We also prove that in general, \({{\textsf {UAM}}}\) complexity is lower bounded by the classic discrepancy bound, and we give evidence that it is not generally lower bounded by the classic corruption bound.

Keywords

Zero-information protocols Unambiguity Arthur–Merlin communication 

References

  1. 1.
    Ada, A., Chattopadhyay, A., Cook, S., Fontes, L., Koucký, M., Pitassi, T.: The hardness of being private. ACM Trans. Comput. Theory (2014). doi:10.1145/2567671 MathSciNetMATHGoogle Scholar
  2. 2.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC\(^{\text{0 }}\). SIAM J. Comput. 36(4), 845–888 (2006). doi:10.1137/S0097539705446950 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity theory. ACM Trans. Comput. Theory (2009). doi:10.1145/1490270.1490272 MATHGoogle Scholar
  4. 4.
    Braverman, M., Ellen, F., Oshman, R., Pitassi, T., Vaikuntanathan, V.: A tight bound for set disjointness in the message-passing model. In: Proceedings of the 54th Symposium on Foundations of Computer Science (FOCS), pp. 668–677. IEEE (2013). doi:10.1109/FOCS.2013.77
  5. 5.
    Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity theory. In: Proceedings of the 27th Symposium on Foundations of Computer Science (FOCS), pp. 337–347. IEEE (1986). doi:10.1109/SFCS.1986.15
  6. 6.
    Böhler, E., Glaßer, C., Meister, D.: Error-bounded probabilistic computations between MA and AM. J. Comput. Syst. Sci. 72(6), 1043–1076 (2006). doi:10.1016/j.jcss.2006.05.001 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Braverman, M., Garg, A., Pankratov, D., Weinstein, O.: From information to exact communication. In: Proceedings of the 45th Symposium on Theory of Computing (STOC), pp. 151–160. ACM (2013). doi:10.1145/2488608.2488628
  8. 8.
    Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988). doi:10.1016/0022-0000(88)90028-1 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Braverman, M., Moitra, A.: An information complexity approach to extended formulations. In: Proceedings of the 45th Symposium on Theory of Computing (STOC), pp. 161–170. ACM (2013). doi:10.1145/2488608.2488629
  10. 10.
    Beigel, R., Reingold, N., Spielman, D.: PP is closed under intersection. J. Comput. Syst. Sci. 50(2), 191–202 (1995). doi:10.1006/jcss.1995.1017 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to data stream and communication complexity. J. Comput. Syst. Sci. 68(4), 702–732 (2004). doi:10.1016/j.jcss.2003.11.006 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chakrabarti, A., Cormode, G., Goyal, N., Thaler, J.: Annotations for sparse data streams. In: Proceedings of the 25th Symposium on Discrete Algorithms (SODA), pp. 687–706. ACM-SIAM (2014). doi:10.1137/1.9781611973402.52
  13. 13.
    Chakrabarti, A., Cormode, G., McGregor, A., Thaler, J., Venkatasubramanian, S.: Verifiable stream computation and Arthur–Merlin communication. In: Proceedings of the 30th Computational Complexity Conference (CCC), pp. 217–243. Schloss Dagstuhl (2015). doi:10.4230/LIPIcs.CCC.2015.217
  14. 14.
    Chakrabarti, A., Cormode, G., McGregor, A., Thaler, J.: Annotations in data streams. ACM Trans. Algorithms 11(1), 7 (2014). doi:10.1145/2636924 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-party communication complexity of set disjointness. In: Proceedings of the 18th Conference on Computational Complexity (CCC), pp. 107–117. IEEE (2003). doi:10.1109/CCC.2003.1214414
  16. 16.
    Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and the direct sum problem for simultaneous message complexity. In: Proceedings of the 42nd Symposium on Foundations of Computer Science (FOCS), pp. 270–278. IEEE (2001). doi:10.1109/SFCS.2001.959901
  17. 17.
    Damm, C.: Problems complete for \(\oplus \)L. Inf. Process. Lett. 36(5), 247–250 (1990). doi:10.1016/0020-0190(90)90150-V MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Dasgupta, A., Kumar, R., Sivakumar, D.: Sparse and lopsided set disjointness via information theory. In: Proceedings of the 16th International Workshop on Randomization and Computation (RANDOM), pp. 517–528. Springer (2012). doi:10.1007/978-3-642-32512-0_44
  19. 19.
    Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: Proceedings of the 26th Symposium on Theory of Computing (STOC), pp. 554–563. ACM (1994). doi:10.1145/195058.195408
  20. 20.
    Göös, M., Lovett, S., Meka, R.: Thomas Watson, and David Zuckerman. Rectangles are nonnegative juntas. In: Proceedings of the 47th Symposium on Theory of Computing (STOC), pp. 257–266. ACM (2015). doi:10.1145/2746539.2746596
  21. 21.
    Gur, T., Raz, R.: Arthur-Merlin streaming complexity. Inf. Comput. 243, 145–165 (2015). doi:10.1016/j.ic.2014.12.011 MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Gur, T., Rothblum, R.: Non-interactive proofs of proximity. In: Proceedings of the 6th Innovations in Theoretical Computer Science Conference (ITCS), pp. 133–142. ACM (2015). doi:10.1145/2688073.2688079
  23. 23.
    Gronemeier, A.: Asymptotically optimal lower bounds on the NIH-multi-party information complexity of the AND-function and disjointness. In: Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 505–516. Schloss Dagstuhl (2009). doi:10.4230/LIPIcs.STACS.2009.1846
  24. 24.
    Gavinsky, D., Sherstov, A.: A separation of NP and coNP in multiparty communication complexity. Theory Comput. 6(1), 227–245 (2010). doi:10.4086/toc.2010.v006a010 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Grolmusz, V., Tardos, G.: A note on non-deterministic communication complexity with few witnesses. Theory Comput. Syst. 36(4), 387–391 (2003). doi:10.1007/s00224-003-1158-7 MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Gál, A., Wigderson, A.: Boolean complexity classes vs. their arithmetic analogs. Random Struct. Algorithms 9(1–2), 99–111 (1996). doi:10.1002/(SICI)1098-2418(199608/09)9:1/2<99::AID-RSA7>3.0.CO;2-6
  27. 27.
    Göös, M., Watson, T.: Communication complexity of set-disjointness for all probabilities. In: Proceedings of the 18th International Workshop on Randomization and Computation (RANDOM), pp. 721–736. Schloss Dagstuhl (2014). doi:10.4230/LIPIcs.APPROX-RANDOM.2014.721
  28. 28.
    Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Proceedings of the 29th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 244–256. Springer (2002). doi:10.1007/3-540-45465-9_22
  29. 29.
    Impagliazzo, R., Kabanets, V., Kolokolova, A.: An axiomatic approach to algebrization. In: Proceedings of the 41st Symposium on Theory of Computing (STOC), pp. 695–704. ACM (2009). doi:10.1145/1536414.1536509
  30. 30.
    Impagliazzo, R., Williams, R.: Communication complexity with synchronized clocks. In: Proceedings of the 25th Conference on Computational Complexity (CCC), pp. 259–269. IEEE (2010). doi:10.1109/CCC.2010.32
  31. 31.
    Jayram, T.S.: Hellinger strikes back: a note on the multi-party information complexity of AND. In: Proceedings of the 13th International Workshop on Randomization and Computation (RANDOM), pp. 562–573. Springer (2009). doi:10.1007/978-3-642-03685-9_42
  32. 32.
    Jain, R., Klauck, H.: The partition bound for classical communication complexity and query complexity. In: Proceedings of the 25th Conference on Computational Complexity (CCC), pp. 247–258. IEEE (2010). doi:10.1109/CCC.2010.31
  33. 33.
    Johnson, N., Kemp, A., Kotz, S.: Univariate Discrete Distributions, 3rd edn. Wiley, New York (2005)CrossRefMATHGoogle Scholar
  34. 34.
    Jayram, T.S., Kumar, R., Sivakumar, D.: Two applications of information complexity. In: Proceedings of the 35th Symposium on Theory of Computing (STOC), pp. 673–682. ACM (2003). doi:10.1145/780542.780640
  35. 35.
    Jukna, S.: On graph complexity. Comb. Probab. Comput. 15(6), 855–876 (2006). doi:10.1017/S0963548306007620 MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Jukna, S.: Boolean Function Complexity: Advances and Frontiers, volume 27 of Algorithms and Combinatorics. Springer, Berlin (2012)Google Scholar
  37. 37.
    Klauck, H.: Rectangle size bounds and threshold covers in communication complexity. In: Proceedings of the 18th Conference on Computational Complexity (CCC), pp. 118–134. IEEE (2003). doi:10.1109/CCC.2003.1214415
  38. 38.
    Klauck, H.: Lower bounds for quantum communication complexity. SIAM J. Comput. 37(1), 20–46 (2007). doi:10.1137/S0097539702405620 MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Klauck, H.: A strong direct product theorem for disjointness. In: Proceedings of the 42nd Symposium on Theory of Computing (STOC), pp. 77–86. ACM (2010). doi:10.1145/1806689.1806702
  40. 40.
    Klauck, H.: On Arthur Merlin games in communication complexity. In: Proceedings of the 26th Conference on Computational Complexity (CCC), pp. 189–199. IEEE (2011). doi:10.1109/CCC.2011.33
  41. 41.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  42. 42.
    Karchmer, M., Newman, I., Saks, M., Wigderson, A.: Non-deterministic communication complexity with few witnesses. J. Comput. Syst. Sci. 49(2), 247–257 (1994). doi:10.1016/S0022-0000(05)80049-2 MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Klauck, H., Prakash, V.: Streaming computations with a loquacious prover. In: Proceedings of the 4th Innovations in Theoretical Computer Science Conference (ITCS), pp. 305–320. ACM (2013). doi:10.1145/2422436.2422471
  44. 44.
    Klauck, H., Podder, S.: Two results about quantum messages. In: Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science (MFCS), pp. 445–456. Springer (2014). doi:10.1007/978-3-662-44465-8_38
  45. 45.
    Klauck, H., Prakash, V.: An improved interactive streaming algorithm for the distinct elements problem. In: Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP), pp. 919–930. Springer (2014). doi:10.1007/978-3-662-43948-7_76
  46. 46.
    Kushilevitz, E.: Privacy and communication complexity. SIAM J. Discrete Math. 5(2), 273–284 (1992). doi:10.1137/0405021 MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991). doi:10.1109/18.61115 MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Lokam, S.: Spectral methods for matrix rigidity with applications to size-depth trade-offs and communication complexity. J. Comput. Syst. Sci. 63(3), 449–473 (2001). doi:10.1006/jcss.2001.1786 MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Lokam, S.: Complexity lower bounds using linear algebra. Found. Trends Theor. Comput. Sci. 4(1–2), 1–155 (2009). doi:10.1561/0400000011 MathSciNetMATHGoogle Scholar
  50. 50.
    Linial, N., Shraibman, A.: Learning complexity versus communication complexity. Comb. Probab. Comput. 18(1–2), 227–245 (2009). doi:10.1017/S0963548308009656 MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Pudlák, P., Rödl, V., Savický, P.: Graph complexity. Acta Inform. 25(5), 515–535 (1988). doi:10.1007/BF00279952 MathSciNetMATHGoogle Scholar
  52. 52.
    Papakonstantinou, P., Scheder, D., Song, H.: Overlays and limited memory communication. In: Proceedings of the 29th Conference on Computational Complexity (CCC), pp. 298–308. IEEE (2014). doi:10.1109/CCC.2014.37
  53. 53.
    Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. SIAM J. Comput. 29(4), 1118–1131 (2000). doi:10.1137/S0097539798339041 MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Razborov, A.: On rigid matrices. Technical report, Steklov Mathematical Institute (1989) (In Russian)Google Scholar
  55. 55.
    Razborov, A.: On the distributional complexity of disjointness. Theor. Comput. Sci. 106(2), 385–390 (1992). doi:10.1016/0304-3975(92)90260-M MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Raz, R., Shpilka, A.: On the power of quantum proofs. In: Proceedings of the 19th Conference on Computational Complexity (CCC), pp. 260–274. IEEE (2004). doi:10.1109/CCC.2004.1313849
  57. 57.
    Santha, M.: Relativized Arthur-Merlin versus Merlin-Arthur games. Inf. Comput. 80(1), 44–49 (1989). doi:10.1016/0890-5401(89)90022-9 MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Schöning, U.: Probabilistic complexity classes and lowness. J. Comput. Syst. Sci. 39(1), 84–100 (1989). doi:10.1016/0022-0000(89)90020-2 MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Valiant, L.: Graph-theoretic arguments in low-level complexity. In: Proceedings of the 6th Symposium on Mathematical Foundations of Computer Science (MFCS), pp. 162–176. Springer (1977). doi:10.1007/3-540-08353-7_135
  60. 60.
    Valiant, L.: Completeness classes in algebra. In: Proceedings of the 11th Symposium on Theory of Computing (STOC), pp. 249–261. ACM (1979). doi:10.1145/800135.804419
  61. 61.
    Wunderlich, H.: A note on a problem in communication complexity. Technical report, arXiv (2012). arXiv:1205.0903
  62. 62.
    Wunderlich, H.: On a theorem of Razborov. Comput. Complex. 21(3), 431–477 (2012). doi:10.1007/s00037-011-0021-5 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations