, Volume 77, Issue 3, pp 686–713 | Cite as

Line-Distortion, Bandwidth and Path-Length of a Graph

  • Feodor F. DraganEmail author
  • Ekkehard Köhler
  • Arne Leitert


For a graph \(G=(V,E)\) the minimum line-distortion problem asks for the minimum k such that there is a mapping f of the vertices into points of the line such that for each pair of vertices xy the distance on the line \(|f(x) - f(y)|\) can be bounded by the term \(d_G(x, y)\le |f(x)-f(y)|\le k \, d_G(x, y)\), where \(d_G(x, y)\) is the distance in the graph. The minimum bandwidth problem minimizes the term \(\max _{uv\in E}|f(u)-f(v)|\), where f is a mapping of the vertices of G into the integers \(\{1, \ldots , n\}\). We investigate the minimum line-distortion and the minimum bandwidth problems on unweighted graphs and their relations with the minimum length of a Robertson–Seymour’s path-decomposition. The length of a path-decomposition of a graph is the largest diameter of a bag in the decomposition. The path-length of a graph is the minimum length over all its path-decompositions. In particular, we show:
  • there is a simple polynomial time algorithm that embeds an arbitrary unweighted input graph G into the line with distortion \(\mathcal{O}(k^2)\), where k is the minimum line-distortion of G;

  • if a graph G can be embedded into the line with distortion k, then G admits a Robertson–Seymour’s path-decomposition with bags of diameter at most k in G;

  • for every class of graphs with path-length bounded by a constant, there exist an efficient constant-factor approximation algorithm for the minimum line-distortion problem and an efficient constant-factor approximation algorithm for the minimum bandwidth problem;

  • there is an efficient 2-approximation algorithm for computing the path-length of an arbitrary graph;

  • AT-free graphs and some intersection families of graphs have path-length at most 2;

  • for AT-free graphs, there exist a linear time 8-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem.


Graph algorithms Approximation algorithms Minimum line-distortion Minimum bandwidth Robertson–Seymour’s path-decomposition Path-length AT-free graphs 



We are very grateful to anonymous referees for many useful suggestions.


  1. 1.
    Assman, S.F., Peck, G.W., Syslo, M.M., Zak, J.: The bandwidth of caterpillars with hairs of length 1 and 2. SIAM J. Algebraic Discrete Methods 2, 387–392 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the bandwidth problem, Technical report TR98-014. University of Bonn (1997)Google Scholar
  3. 3.
    Bădoiu, M., Chuzhoy, J., Indyk, P., Sidiropoulos, A.: Low-distortion embeddings of general metrics into the line, In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC 2005). Baltimore, MD, USA, ACM, pp. 225–233, 22–24 May 2005Google Scholar
  4. 4.
    Bǎdoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Raecke, H., Ravi, R., Sidiropoulos, A.: Approximation algorithms for low-distortion embeddings into low-dimensional spaces, In: Proceedings of the ACM/SIAM Symposium on Discrete Algorithms, (2005)Google Scholar
  5. 5.
    Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)Google Scholar
  6. 6.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Discrete Math. 10, 399–430 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28, 292–302 (1997)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Diestel, R.: Graph Theory (Graduate Texts in Mathematics), 2nd edn. Springer, Berlin (2000)Google Scholar
  10. 10.
    Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Math. 307, 208–229 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dragan, F.F., Köhler, E.: An Approximation Algorithm for the tree \(t\)-spanner problem on unweighted graphs via generalized chordal graphs, approximation, randomization, and combinatorial optimization. algorithms and techniques. In: Proceedings of the 14th International Workshop, APPROX 2011, and 15th International Workshop, RANDOM 2011, Princeton, NJ, USA, 17–19 Aug 2011. Lecture Notes in Computer Science 6845, Springer, pp. 171–183; Algorithmica 69 (2014), 884–905Google Scholar
  12. 12.
    Dragan, F.F., Köhler, E., Leitert, A.: Line-distortion, Bandwidth and path-length of a graph. In Proceedings of 14th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2014), July 2-4 2014. Copenhagen, Denmark, Lecture Notes in Computer Science 8503, pp. 146–257 (2014)Google Scholar
  13. 13.
    Dubey, Ch., Feige, U., Unger, W.: Hardness results for approximating the bandwidth. J. Comput. Syst. Sci. 77, 62–90 (2011)Google Scholar
  14. 14.
    Feige, U.: Approximating the bandwidth via volume respecting embedding. J. Comput. Syst. Sci. 60, 510–539 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Feige, U., Talwar, K.: Approximating the bandwidth of caterpillars. In: Proceedings of 8th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2005) and 9th International Workshop on Randomization and Computation (RANDOM 2005), Berkeley, CA, USA, Lecture Notes in Computer Science 3624, 2005, pp 62–73, 22–24 Aug 2005Google Scholar
  16. 16.
    Fellows, M.R., Fomin, F.V., Lokshtanov, D., Losievskaja, E., Rosamond, F.A., Saurabh, S.: Distortion is fixed parameter tractable. ACM Trans. Comput. Theory 5, 16.1–16.20 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fomin, F.V., Lokshtanov, D., Saurabh, S.: An exact algorithm for minimum distortion embedding. Theor. Comput. Sci. 412, 3530–3536 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and interval graphs. Can. J. Math. 16, 539–548 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Golovach, P.A., Heggernes, P., Kratsch, D., Lokshtanov, D., Meister, D., Saurabh, S.: Bandwidth on AT-free graphs. Theor. Comput. Sci. 412, 7001–7008 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)zbMATHGoogle Scholar
  22. 22.
    Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection graphs. Discrete Math. 43, 37–46 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gupta, A.: Improved bandwidth approximation for trees and chordal graphs. J. Algorithms 40, 24–36 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Heggernes, P., Kratsch, D., Meister, D.: Bandwidth of bipartite permutation graphs in polynomial time. J. Discrete Algorithms 7, 533–544 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Heggernes, P., Meister, D.: Hardness and approximation of minimum distortion embeddings. Inf. Process. Lett. 110, 312–316 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Heggernes, P., Meister, D., Proskurowski, A.: Computing minimum distortion embeddings into a path of bipartite permutation graphs and threshold graphs. Theor. Comput. Sci. 412, 1275–1297 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In: Proceedings of 42nd IEEE Symposium on Foundations of Computer Science (FOCS 2001). IEEE, pp. 10–35Google Scholar
  28. 28.
    Indyk, P., Matousek, J.: Low-distortion embeddings of finite metric spaces. In: Goodman J.E., O’Rourke J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 177–196. CRC press, New York (2004)Google Scholar
  29. 29.
    Kleitman, D.J., Vohra, R.V.: Computing the bandwidth of interval graphs. SIAM J. Discrete Math. 3, 373–375 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for asteroidal triple-free graphs. J. Algorithms 32, 41–57 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kratsch, D., Spinrad, J.: Between \({\cal O}(n m)\), In: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms (SODA 2003). ACM, pp. 709–716Google Scholar
  32. 32.
    Kratsch, D., Stewart, L.: Approximating bandwidth by mixing layouts of interval graphs. SIAM J. Discrete Math. 15, 435–449 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Lokshtanov, D.: On the complexity of computing treelength. Discrete Appl. Math. 158(7), 820–827 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ma, T.H., Spinrad, J.P.: On the two-chain subgraph cover and related problems. J. Algorithms 17, 251–268 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    McConnell, R.M., Spinrad, J.P.: Linear-time transitive orientation. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana 5–7, 19–25 (1997)Google Scholar
  36. 36.
    Monien, B.: The bandwidth-minimization problem for caterpillars with hair length 3 is NP-complete. SIAM J. Algebraic Discrete Methods 7, 505–512 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Olariu, S.: An optimal greedy heuristic to color interval graphs. Inf. Process. Lett. 37, 65–80 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Proskurowski, A., Telle, J.A.: Classes of graphs with restricted interval models. Discrete Math. Theor. Comput. Sci. 3, 167–176 (1999)MathSciNetzbMATHGoogle Scholar
  39. 39.
  40. 40.
    Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. J. Comb. Theory Ser. B 35, 39–61 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Shrestha, A.M.S., Tayu, S., Ueno, S.: Bandwidth of convex bipartite graphs and related graphs. Inf. Process. Lett. 112, 411–417 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Sprague, A.P.: An \({\cal O}(n \log n)\) algorithm for bandwidth of interval graphs. SIAM J. Discrete Math. 7, 213–220 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Feodor F. Dragan
    • 1
    Email author
  • Ekkehard Köhler
    • 2
  • Arne Leitert
    • 1
  1. 1.Algorithmic Research Laboratory, Department of Computer ScienceKent State UniversityKentUSA
  2. 2.Mathematisches InstitutBrandenburgische Technische Universität CottbusCottbusGermany

Personalised recommendations