# Certifying 3-Edge-Connectivity

- 255 Downloads
- 1 Citations

## Abstract

We present a certifying algorithm that tests graphs for 3-edge-connectivity; the algorithm works in linear time. If the input graph is not 3-edge-connected, the algorithm returns a 2-edge-cut. If it is 3-edge-connected, it returns a construction sequence that constructs the input graph from the graph with two vertices and three parallel edges using only operations that (obviously) preserve 3-edge-connectivity. Additionally, we show how to compute and certify the 3-edge-connected components and a cactus representation of the 2-cuts in linear time. For 3-vertex-connectivity, we show how to compute the 3-vertex-connected components of a 2-connected graph.

### Keywords

Certifying algorithm Edge connectivity Construction sequence### References

- 1.Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, Ch.: A framework for the verification of certifying computations. J. Autom. Reason.
**52**(3), 241–273 (2014)MathSciNetCrossRefMATHGoogle Scholar - 2.Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Berlin (2008)CrossRefMATHGoogle Scholar
- 3.Corcoran, J.N., Schneider, U., Schüttler, H.-B.: Perfect stochastic summation in high order feynman graph expansions. Int. J. Mod. Phys. C
**17**(11), 1527–1549 (2006)MathSciNetCrossRefMATHGoogle Scholar - 4.Dehne, F., Langston, M., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: implementations and experiments. In:
*Parameterized and Exact Computation*, pp. 13–24 (2006)Google Scholar - 5.Dinits, E.A., Karzanov, A.V., Lomonosov, M.V.: On the structure of a family of minimal weighted cuts in graphs. In: Studies in Discrete Mathematics (in Russian), pp. 290–306 (1976)Google Scholar
- 6.Fleiner, T., Frank, A.: A quick proof for the cactus representation of mincuts. Technical Report QP-2009-03, Egerváry Research Group, Budapest (2009)Google Scholar
- 7.Gabow, H.N.: Path-based depth-first search for strong and biconnected components. Inf. Process. Lett.
**74**(3–4), 107–114 (2000)MathSciNetCrossRefMATHGoogle Scholar - 8.Galil, Z., Italiano, G.F.: Reducing edge connectivity to vertex connectivity. SIGACT News
**22**(1), 57–61 (1991)CrossRefGoogle Scholar - 9.Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Proceedings of the 8th International Symposium on Graph Drawing (GD’00), pp. 77–90 (2001)Google Scholar
- 10.Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM
**21**(4), 549–568 (1974)MathSciNetCrossRefMATHGoogle Scholar - 11.Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput.
**2**(3), 135–158 (1973)MathSciNetCrossRefMATHGoogle Scholar - 12.Karger, D.R.: Minimum cuts in near-linear time. J. ACM
**47**(1), 46–76 (2000)MathSciNetCrossRefMATHGoogle Scholar - 13.Linial, N., Lovász, L., Wigderson, A.: Rubber bands, convex embeddings and graph connectivity. Combinatorica
**8**(1), 91–102 (1988)MathSciNetCrossRefMATHGoogle Scholar - 14.Lovász, L.: Computing ears and branchings in parallel. In: Proceedings of the 26th Annual Symposium on Foundations of Computer Science (FOCS’85) (1985)Google Scholar
- 15.Mader, W.: A reduction method for edge-connectivity in graphs. In: Bollobás, B. (ed.) Advances in Graph Theory, vol. 3 of Annals of Discrete Mathematics, pp. 145–164 (1978)Google Scholar
- 16.McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Comput. Sci. Rev.
**5**(2), 119–161 (2011)CrossRefMATHGoogle Scholar - 17.Mehlhorn, K.: Nearly optimal binary search trees. Acta Inform.
**5**, 287–295 (1975)MathSciNetCrossRefMATHGoogle Scholar - 18.Mehlhorn, K., Näher, S., Uhrig, C.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
- 19.Nagamochi, H., Ibaraki, T.: A linear time algorithm for computing 3-edge-connected components in a multigraph. Jpn. J. Ind. Appl. Math.
**9**, 163–180 (1992)MathSciNetCrossRefMATHGoogle Scholar - 20.Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity (Encyclopedia of Mathematics and its Applications). Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
- 21.Neumann, A.: Implementation of Schmidt’s algorithm for certifying triconnectivity testing. Master’s thesis, Universität des Saarlandes and Graduate School of CS, Germany (2011)Google Scholar
- 22.Noschinski, L., Rizkallah, C., Mehlhorn, K.: Verification of certifying computations through Autocorres and Simpl. In:
*NASA Formal Methods, vol. 8430 of LNCS*, pp. 46–61 (2014)Google Scholar - 23.Olariu, S., Zomaya, A.Y.: A time- and cost-optimal algorithm for interlocking sets-with applications. IEEE Trans. Parallel Distrib. Syst.
**7**(10), 1009–1025 (1996)CrossRefGoogle Scholar - 24.Ramachandran, V.: Parallel open ear decomposition with applications to graph biconnectivity and triconnectivity. In: Synthesis of Parallel Algorithms, pp. 275–340 (1993)Google Scholar
- 25.Schmidt, J.M.: Contractions, removals and certifying 3-connectivity in linear time. Tech. Report B 10-04, Freie Universität Berlin, Germany (2010)Google Scholar
- 26.Schmidt, J.M.: Contractions, removals and certifying 3-connectivity in linear time. SIAM J. Comput.
**42**(2), 494–535 (2013)MathSciNetCrossRefMATHGoogle Scholar - 27.Schmidt, J.M.: A simple test on 2-vertex- and 2-edge-connectivity. Inf. Process. Lett.
**113**(7), 241–244 (2013)MathSciNetCrossRefMATHGoogle Scholar - 28.Taoka, S., Watanabe, T., Onaga, K.: A linear time algorithm for computing all 3-edge-connected components of a multigraph. IEICE Trans. Fundam.
**E75**(3), 410–424 (1992)Google Scholar - 29.Tsin, Y.H.: A simple 3-edge-connected component algorithm. Theory Comput. Syst.
**40**(2), 125–142 (2007)MathSciNetCrossRefMATHGoogle Scholar - 30.Tsin, Y.H.: Yet another optimal algorithm for 3-edge-connectivity. J. Discrete Algorithms
**7**(1), 130–146 (2009)MathSciNetCrossRefMATHGoogle Scholar - 31.Vo, K.-P.: Finding triconnected components of graphs. Linear Multilinear Algebra
**13**, 143–165 (1983)MathSciNetCrossRefMATHGoogle Scholar - 32.Vo, K.-P.: Segment graphs, depth-first cycle bases, 3-connectivity, and planarity of graphs. Linear Multilinear Algebra
**13**, 119–141 (1983)MathSciNetCrossRefMATHGoogle Scholar