Advertisement

Algorithmica

, Volume 75, Issue 2, pp 277–294 | Cite as

On the Read-Once Property of Branching Programs and CNFs of Bounded Treewidth

  • Igor Razgon
Article

Abstract

In this paper we prove a space lower bound of \(n^{\varOmega (k)}\) for non-deterministic (syntactic) read-once branching programs (nrobps) on functions expressible as cnfs with treewidth at most k of their primal graphs. This lower bound rules out the possibility of fixed-parameter space complexity of nrobps parameterized by k. We use lower bound for nrobps to obtain a quasi-polynomial separation between Free Binary Decision Diagrams and Decision Decomposable Negation Normal Forms, essentially matching the existing upper bound introduced by Beame et al. (Proceedings of the twenty-ninth conference on uncertainty in artificial intelligence, Bellevue, 2013) and thus proving the tightness of the latter.

Keywords

Read-once branching programs CNFs Bounded treewidth Parameterized complexity Space complexity Lower bounds 

References

  1. 1.
    Beame, P., Li, J., Roy, S., Suciu, D.: Lower bounds for exact model counting and applications in probabilistic databases. In: Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, Bellevue, WA, USA, August 11–15 (2013)Google Scholar
  2. 2.
    Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: Expander cnfs have exponential DNNF size. CoRR. arXiv:1411.1995 (2014)
  3. 3.
    Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)CrossRefGoogle Scholar
  4. 4.
    Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Darwiche, A.: SDD: A new canonical representation of propositional knowledge bases. In: 22nd International Joint Conference on Artificial Intelligence (IJCAI), pp. 819–826 (2011)Google Scholar
  6. 6.
    Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. (JAIR) 17, 229–264 (2002)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ferrara, A., Pan, G., Vardi, M.Y.: Treewidth in verification: local vs. global. In: Logic for Programming, Artificial Intelligence, and Reasoning, 12th International Conference (LPAR), pp. 489–503 (2005)Google Scholar
  8. 8.
    Jha, A.K., Suciu, D.: On the tractability of query compilation and bounded treewidth. In: 15th International Conference on Database Theory (ICDT), pp. 249–261 (2012)Google Scholar
  9. 9.
    Jukna, S.: A note on read-k times branching programs. Electronic Colloquium on Computational Complexity (ECCC), 1(27), (1994)Google Scholar
  10. 10.
    Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    McMillan, K.L.: Hierarchical representations of discrete functions, with application to model checking. In: Computer Aided Verification, 6th International Conference, (CAV), pp. 41–54 (1994)Google Scholar
  12. 12.
    Oztok, U., Darwiche, A.: On compiling CNF into decision-dnnf. In: Principles and Practice of Constraint Programming—20th International Conference, (CP), pp. 42–57 (2014)Google Scholar
  13. 13.
    Razborov, A.A., Wigderson, A., Yao A.C.: Read-once branching programs, rectangular proofs of the pigeonhole principle and the transversal calculus. In: Symposium on the Theory of Computing (STOC), pp. 739–748 (1997)Google Scholar
  14. 14.
    Razgon, I.: On obdds for cnfs of bounded treewidth. In: Principles of Knowledge Representation and Reasoning(KR), (2014)Google Scholar
  15. 15.
    Vatschelle, M.: New width parameters of graphs. Ph.D. thesis, Department of Informatics, University of Bergen (2012)Google Scholar
  16. 16.
    Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer Science and Information SystemsBirkbeck, University of LondonLondonUK

Personalised recommendations