Algorithmica

, Volume 75, Issue 4, pp 579–605

# An Asymptotic Analysis of Labeled and Unlabeled k-Trees

Article

## Abstract

In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers $$U_k(n)$$ of unlabeled k-trees of size n are asymptotically given by $$U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}$$, where $$c_k> 0$$ and $$\rho _{k}>0$$ denotes the radius of convergence of the generating function $$U(z)=\sum _{n\ge 0} U_k(n) z^n$$.

## Keywords

k-trees Generating function Singularity analysis  Central limit theorem

05A16 05A15

## Notes

### Acknowledgments

We thank the anonymous reviewers for helpful suggestions on the first version of this paper.

## References

1. 1.
Aldous, D.: The continuum random tree III. Ann. Probab. 21(1), 248–289 (1993)
2. 2.
Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability—a survey. BIT Numer. Math. 25(1), 1–23 (1985)
3. 3.
Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial $$k$$-trees. Discrete Appl. Math. 23, 11–24 (1989)
4. 4.
Beineke, L.W., Pippert, R.E.: The number of labeled k-dimensional trees. J. Comb. Theory A 6(2), 200–205 (1969)
5. 5.
Bertele, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theory A 14(2), 137–148 (1973)
6. 6.
Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 193–242. Elsevier (1990)Google Scholar
7. 7.
Courcelle, B.: The monadic second-order logic of graphs I: recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)
8. 8.
Darrasse, A., Soria, M.: Limiting distribution for distances in $$k$$-trees. Comb. Algorithms Lect. Notes Comput. Sci. 5874, 170–182 (2009)
9. 9.
Drmota, M.: Random Trees: An Interplay Between Combinatorics and Probability. Springer, Berlin (2008)
10. 10.
Drmota, M., Gittenberger, B.: The distribution of nodes of given degree in random trees. J. Graph Theory 31(3), 227–253 (1999)
11. 11.
Drmota, M., Fusy, E., Kang, M., Kraus, V., Rue, J.: Asymptotic study of subcritical graph classes. SIAM J. Dicrete Math. 25, 1615–1651 (2011)
12. 12.
Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2010)
13. 13.
Foata, D.: Enumerating k-trees. Discrete Math. 1, 181–186 (1971)
14. 14.
Fowler, T., Gessel, I., Labelle, G., Leroux, P.: The specification of 2-trees. Adv. Appl. Math. 28, 145–168 (2002)
15. 15.
Gainer-Dewar, A.: $$\Gamma$$-species and the enumeration of $$k$$-trees. Electron. J. Comb. 19(4), P45 (2012)
16. 16.
Gessel, I.M., Gainer-Dewar, A.: Counting unlabeled $$k$$-trees. J. Comb. Theory A 126, 177–193 (2014)
17. 17.
Grötschel, M., Katona, G.O.H.: Building Bridges: Between Mathematics and Computer Science, Bolyai Society Mathematical Studies, vol. 19. Springer, Berlin (2008)
18. 18.
Haas, B., Miermont, G.: Scaling limits of Markov branching trees with applications to Galton–Watson and random unordered trees. Ann. Probab. 40(6), 2299–2706 (2012)
19. 19.
Harary, F., Palmer, E.M.: On acyclic simplicial complexes. Mathematika 15, 115–122 (1968)
20. 20.
Harary, F., Palmer, E.M.: Graphical Enumeration. Academic Press, New York (1973)
21. 21.
Krause, A. : Bounded Treewidth Graphs–A Survey. German Russian Winter School, St. Petersburg, Russia. http://www14.in.tum.de/konferenzen/Jass03/presentations/krause (2003)
22. 22.
Labelle, G., Lamathe, C., Leroux, P.: Labelled and unlabelled enumeration of k-gonal 2-trees. J. Comb. Theory A 106, 193–219 (2004)
23. 23.
Moon, J.W.: The number of labeled k-trees. J. Comb. Theory A 6, 196–199 (1969)
24. 24.
Otter, R.: The number of trees. Ann. Math. 49, 583–599 (1948)
25. 25.
Panagiotou, K., Stufler, B., Weller, K.: Scaling Limits of Random Graphs from Subcritical Classes. arXiv:1411.1865 (2004)
26. 26.
Robinson, R.W., Schwenk, A.J.: The distribution of degrees in a large random tree. Discrete Math. 12, 359–372 (1975)
27. 27.
Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory B 35, 39–61 (1983)
28. 28.
Telle, J.A., Proskurowski, A.: Practical algorithms on partial $$k$$-trees with an application to domination-like problems. Algorithms Data Struct. Lect. Notes Comput. Sci. 709, 610–621 (1993)