, Volume 75, Issue 4, pp 579–605 | Cite as

An Asymptotic Analysis of Labeled and Unlabeled k-Trees

  • Michael Drmota
  • Emma Yu Jin


In this paper we provide a systematic treatment of several shape parameters of (random) k-trees. Our research is motivated by many important algorithmic applications of k-trees in the context of tree-decomposition of a graph and graphs of bounded tree-width. On the other hand, k-trees are also a very interesting object from the combinatorial point of view. For both labeled and unlabeled k-trees, we prove that the number of leaves and more generally the number of nodes of given degree satisfy a central limit theorem with mean value and variance that are asymptotically linear in the size of the k-tree. In particular we solve the asymptotic counting problem for unlabeled k-trees. By applying a proper singularity analysis of generating functions we show that the numbers \(U_k(n)\) of unlabeled k-trees of size n are asymptotically given by \(U_k(n) \sim c_k n^{-5/2}\rho _{k}^{-n}\), where \(c_k> 0\) and \(\rho _{k}>0\) denotes the radius of convergence of the generating function \(U(z)=\sum _{n\ge 0} U_k(n) z^n\).


k-trees Generating function Singularity analysis  Central limit theorem 

Mathematics Subject Classification

05A16 05A15 



We thank the anonymous reviewers for helpful suggestions on the first version of this paper.


  1. 1.
    Aldous, D.: The continuum random tree III. Ann. Probab. 21(1), 248–289 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability—a survey. BIT Numer. Math. 25(1), 1–23 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial \(k\)-trees. Discrete Appl. Math. 23, 11–24 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beineke, L.W., Pippert, R.E.: The number of labeled k-dimensional trees. J. Comb. Theory A 6(2), 200–205 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bertele, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theory A 14(2), 137–148 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 193–242. Elsevier (1990)Google Scholar
  7. 7.
    Courcelle, B.: The monadic second-order logic of graphs I: recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Darrasse, A., Soria, M.: Limiting distribution for distances in \(k\)-trees. Comb. Algorithms Lect. Notes Comput. Sci. 5874, 170–182 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Drmota, M.: Random Trees: An Interplay Between Combinatorics and Probability. Springer, Berlin (2008)zbMATHGoogle Scholar
  10. 10.
    Drmota, M., Gittenberger, B.: The distribution of nodes of given degree in random trees. J. Graph Theory 31(3), 227–253 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Drmota, M., Fusy, E., Kang, M., Kraus, V., Rue, J.: Asymptotic study of subcritical graph classes. SIAM J. Dicrete Math. 25, 1615–1651 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  13. 13.
    Foata, D.: Enumerating k-trees. Discrete Math. 1, 181–186 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fowler, T., Gessel, I., Labelle, G., Leroux, P.: The specification of 2-trees. Adv. Appl. Math. 28, 145–168 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gainer-Dewar, A.: \(\Gamma \)-species and the enumeration of \(k\)-trees. Electron. J. Comb. 19(4), P45 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gessel, I.M., Gainer-Dewar, A.: Counting unlabeled \(k\)-trees. J. Comb. Theory A 126, 177–193 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grötschel, M., Katona, G.O.H.: Building Bridges: Between Mathematics and Computer Science, Bolyai Society Mathematical Studies, vol. 19. Springer, Berlin (2008)CrossRefGoogle Scholar
  18. 18.
    Haas, B., Miermont, G.: Scaling limits of Markov branching trees with applications to Galton–Watson and random unordered trees. Ann. Probab. 40(6), 2299–2706 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Harary, F., Palmer, E.M.: On acyclic simplicial complexes. Mathematika 15, 115–122 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Harary, F., Palmer, E.M.: Graphical Enumeration. Academic Press, New York (1973)zbMATHGoogle Scholar
  21. 21.
    Krause, A. : Bounded Treewidth Graphs–A Survey. German Russian Winter School, St. Petersburg, Russia. (2003)
  22. 22.
    Labelle, G., Lamathe, C., Leroux, P.: Labelled and unlabelled enumeration of k-gonal 2-trees. J. Comb. Theory A 106, 193–219 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Moon, J.W.: The number of labeled k-trees. J. Comb. Theory A 6, 196–199 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Otter, R.: The number of trees. Ann. Math. 49, 583–599 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Panagiotou, K., Stufler, B., Weller, K.: Scaling Limits of Random Graphs from Subcritical Classes. arXiv:1411.1865 (2004)
  26. 26.
    Robinson, R.W., Schwenk, A.J.: The distribution of degrees in a large random tree. Discrete Math. 12, 359–372 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory B 35, 39–61 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Telle, J.A., Proskurowski, A.: Practical algorithms on partial \(k\)-trees with an application to domination-like problems. Algorithms Data Struct. Lect. Notes Comput. Sci. 709, 610–621 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institut für Diskrete Mathematik und GeometrieTU WienViennaAustria

Personalised recommendations