Algorithmica

, Volume 75, Issue 3, pp 507–528 | Cite as

Superpolynomial Lower Bounds for the \((1+1)\) EA on Some Easy Combinatorial Problems

Article

Abstract

The (\(1+1\)) EA is a simple evolutionary algorithm that is known to be efficient on linear functions and on some combinatorial optimization problems. In this paper, we rigorously study its behavior on three easy combinatorial problems: finding the 2-coloring of a class of bipartite graphs, solving a class of satisfiable 2-CNF formulas, and solving a class of satisfiable propositional Horn formulas. We prove that it is inefficient on all three problems in the sense that the number of iterations the algorithm needs to minimize the cost functions is superpolynomial with high probability. Our motivation is to better understand the influence of problem instance structure on the runtime character of a simple evolutionary algorithm. We are interested in what kind of structural features give rise to so-called metastable states at which, with probability \(1 - o(1)\), the (\(1+1\)) EA becomes trapped and subsequently has difficulty leaving. Finally, we show how to modify the (\(1+1\)) EA slightly in order to obtain a polynomial-time performance guarantee on all three problems.

Keywords

Runtime analysis Lower bounds \((1+1)\) EA 

References

  1. 1.
    Apsvall, B., Plass, M.F., Tarjan, R.E.: A linear time algorithm for testing the truth of certain quantified Boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific, Singapore (2011)MATHGoogle Scholar
  3. 3.
    Briest, P., Brockhoff, D., Degener, B., Englert, M., Gunia, C., Heering, O., Jansen, T., Leifhelm, M., Plociennik, K., Röglin, H., Schweer, A., Sudholt, D., Tannenbaum, S., Wegener, I.: The Ising model: simple evolutionary algorithms as adaptation schemes. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature (PPSN VIII). Lecture Notes in Computer Science, vol. 3242, pp. 31–40. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Cook, S., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  5. 5.
    Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: fast crossover-based genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 781–788. ACM (2013)Google Scholar
  6. 6.
    Doerr, B., Hebbinghaus, N., Neumann, F.: Speeding up evolutionary algorithms through asymmetric mutation operators. Evol. Comput. 15(4), 401–410 (2007)CrossRefGoogle Scholar
  7. 7.
    Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64(4), 673–697 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-box optimization. Theory Comput. Syst. 39(4), 525–544 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Feller, W.: Generalization of a probability limit theorem of Cramér. Trans. Am. Math. Soc. 54(3), 361–372 (1943)MathSciNetMATHGoogle Scholar
  10. 10.
    Fischer, S.: A polynomial upper bound for a mutation-based algorithm on the two-dimensional Ising model. In: Deb, K. (ed.) Proceedings of the Genetic and Evolutionary Computation (GECCO). Lecture Notes in Computer Science, vol. 3102, pp. 1100–1112. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Fischer, S., Wegener, I.: The one-dimensional Ising model: mutation versus recombination. Theor. Comput. Sci. 344, 208–225 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Alt, H., Habib, M. (eds.) Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS), Lecture Notes in Computer Science, vol. 2607, pp. 415–426. Springer (2003)Google Scholar
  13. 13.
    Hoyweghen, C.V., Goldberg, D.E., Naudts, B.: From twomax to the Ising model: easy and hard symmetrical problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 626–633. Morgan Kaufmann Publishers Inc. (2002)Google Scholar
  14. 14.
    Jansen, T., Sudholt, D.: Analysis of an asymmetric mutation operator. Evol. Comput. 18(1), 1–26 (2010)CrossRefGoogle Scholar
  15. 15.
    Matoušek, J., Vondrák, J.: The probabilistic method (lecture notes) (2008). http://kam.mff.cuni.cz/~matousek/prob-ln.ps.gz
  16. 16.
    McDiarmid, C.: A random recolouring method for graphs and hypergraphs. Comb. Probab. Comput. 2, 363–365 (1993)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Neumann, F., Reichel, J., Skutella, M.: Computing minimum cuts by randomized search heuristics. Algorithmica 59(3), 323–342 (2011)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and their Computational Complexity. Springer, Berlin (2010)CrossRefMATHGoogle Scholar
  19. 19.
    Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. Algorithmica 59(3), 369–386 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Oliveto, P.S., Witt, C.: Erratum: Simplified drift analysis for proving lower bounds in evolutionary computation (2012) arXiv:1211.7184 [cs.NE]
  21. 21.
    Papadimitriou, C.H., Schäffer, A.A., Yannakakis, M.: On the complexity of local search. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing (STOC), pp. 438–445. ACM (1990)Google Scholar
  22. 22.
    Raidl, G.R., Koller, G., Julstrom, B.A.: Biased mutation operators for subgraph-selection problems. IEEE Trans. Evol. Comput. 10(2), 145–156 (2006)CrossRefGoogle Scholar
  23. 23.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing (STOC), pp. 216–226. ACM (1978)Google Scholar
  24. 24.
    Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 1161–1167. ACM (2005)Google Scholar
  25. 25.
    Sutton, A.M.: Superpolynomial lower bounds for the \((1+1)\) EA on some easy combinatorial problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 1431–1438. ACM (2014)Google Scholar
  26. 26.
    Van Hoyweghen, C., Naudts, B., Goldberg, D.E.: Spin-flip symmetry and synchronization. Evol. Comput. 10(4), 317–344 (2002)CrossRefGoogle Scholar
  27. 27.
    Williams, D.: Probability with Martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  28. 28.
    Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22(2), 294–318 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institut für Informatik, Theoretische Informatik IFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations