Algorithmica

, Volume 75, Issue 1, pp 118–137 | Cite as

Chordal Editing is Fixed-Parameter Tractable

Article

Abstract

Graph modification problems typically ask for a small set of operations that transforms a given graph to have a certain property. The most commonly considered operations include vertex deletion, edge deletion, and edge addition; for the same property, one can define significantly different versions by allowing different operations. We study a very general graph modification problem that allows all three types of operations: given a graph Open image in new window and integers Open image in new window, and Open image in new window, the chordal editing problem asks whether Open image in new window can be transformed into a chordal graph by at most Open image in new window vertex deletions, Open image in new window edge deletions, and Open image in new window edge additions. Clearly, this problem generalizes both chordal deletion and chordal completion (also known as minimum fill-in). Our main result is an algorithm for chordal editing in time Open image in new window, where Open image in new window and Open image in new window is the number of vertices of Open image in new window. Therefore, the problem is fixed-parameter tractable parameterized by the total number of allowed operations. Our algorithm is both more efficient and conceptually simpler than the previously known algorithm for the special case chordal deletion.

Keywords

Chordal graph Parameterized computation Graph modification problems Chordal deletion Chordal completion  Clique tree decomposition Holes Simplicial vertex sets 

References

  1. 1.
    Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput. 15(4), 1054–1068 (1986). doi:10.1137/0215075 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Berge, C.: Some classes of perfect graphs. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp. 155–166. Academic Press, New York (1967)Google Scholar
  3. 3.
    Berge, C.: Motivations and history of some of my conjectures. Discrete Math. 165–166, 61–70 (1997). doi:10.1016/S0012-365X(96)00161-6 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996). doi:10.1016/0020-0190(96)00050-6 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3), 415–429 (2003). doi:10.1016/S0166-218X(02)00242-1 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cao, Y.: Unit interval editing is fixed-parameter tractable. In: Automata, Languages and Programming (ICALP), vol. 9134, pp. 306–317. Springer (2015). doi:10.1007/978-3-662-47672-7_25
  7. 7.
    Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: new measure and new structures. Algorithmica (2014). doi:10.1007/s00453-014-9904-6
  8. 8.
    Dearing, P.M., Shier, D.R., Warner, D.D.: Maximal chordal subgraphs. Discrete Appl. Math. 20(3), 181–190 (1988). doi:10.1016/0166-218X(88)90075-3 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dirac, G.A.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 25(1), 71–76 (1961). doi:10.1007/BF02992776 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Fundamentals of parameterized complexity. Undegrad. Texts Comput. Sci. (2013). doi:10.1007/978-1-4471-5559-1
  11. 11.
    Erdős, P., Pósa, L.: On the maximal number of disjoint circuits of a graph. Publicationes Mathematicae Debrecen 9, 3–12 (1962)MathSciNetMATHGoogle Scholar
  12. 12.
    Hajnal, A., Surányi, J.: Über die auflösung von graphen in vollständige teilgraphen. Annales Universitatis Scientarium Budapestinensis de Rolando Eötvös Nominatae Sectio Mathematica 1, 113–121 (1958)MATHGoogle Scholar
  13. 13.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5), 1906–1922. A preliminary version appeared in FOCS 1994 (1999). doi:10.1137/S0097539796303044
  14. 14.
    Krishnamoorthy, M.S., Deo, N.: Node-deletion NP-complete problems. SIAM J. Comput. 8(4), 619–625 (1979). doi:10.1137/0208049 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lewis, J.G., Peyton, B.W., Pothen, A.: A fast algorithm for reordering sparse matrices for parallel factorization. SIAM J. Sci. Stat. Comput. 10(6), 1146–1173 (1989). doi:10.1137/0910070 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230. Preliminary versions independently presented in STOC 1978 (1980). doi:10.1016/0022-0000(80)90060-4
  17. 17.
    Mancini, F.: Graph Modification problems related to graph classes. Ph.D. thesis, University of Bergen, Bergen (2008)Google Scholar
  18. 18.
    Marx, D.: Parameterized coloring problems on chordal graphs. Theor. Comput. Sci. 351(3), 407–424 (2006). doi:10.1016/j.tcs.2005.10.008 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010). doi:10.1007/s00453-008-9233-8 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via treewidth reduction. ACM Trans. Algorithms 9(4), 30.1–30.35. A preliminary version appeared in STACS 2010 (2013). doi:10.1145/2500119
  21. 21.
    Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Appl. Math. 113(1), 109–128. A preliminary version appeared in WG 1999 (2001). doi:10.1016/S0166-218X(00)00391-7
  22. 22.
    Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004). doi:10.1016/j.orl.2003.10.009 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Rose, D.J.: Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32(3), 597–609 (1970). doi:10.1016/0022-247X(70)90282-9 MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Reed, R.C. (ed.) Graph Theory and Computing, pp. 183–217. Academic Press, New York (1973)Google Scholar
  25. 25.
    Xue, J.: Edge-maximal triangulated subgraphs and heuristics for the maximum clique problem. Networks 24(2), 109–120 (1994). doi:10.1002/net.3230240208 MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods 2(1), 77–79 (1981). doi:10.1137/0602010 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ComputingHong Kong Polytechnic UniversityHong KongChina
  2. 2.Institute for Computer Science and ControlHungarian Academy of Sciences (MTA SZTAKI)BudapestHungary

Personalised recommendations