Algorithmica

, Volume 73, Issue 4, pp 673–695 | Cite as

On the Number of Edges of Fan-Crossing Free Graphs

  • Otfried Cheong
  • Sariel Har-Peled
  • Heuna Kim
  • Hyo-Sil Kim
Article

Abstract

A graph drawn in the plane with \(n\) vertices is \(k\)-fan-crossing free for \(k \geqslant 2\) if there are no \(k+1\) edges \(g,e_1,\ldots , e_k\), such that \(e_1,e_2,\ldots ,e_k\) have a common endpoint and \(g\) crosses all \(e_i\). We prove a tight bound of \(4n-8\) on the maximum number of edges of a \(2\)-fan-crossing free graph, and a tight \(4n-9\) bound for a straight-edge drawing. For \(k \geqslant 3\), we prove an upper bound of \(3(k-1)(n-2)\) edges. We also discuss generalizations to monotone graph properties.

Keywords

Graph drawing K-planar graphs Crossing number 

References

  1. 1.
    Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discrete Comput. Geom. 41, 365–375 (2009)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17, 1–9 (1997)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is NP-hard. J. Graph Alg. Appl. 16, 569–597 (2012)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Didimo, W.: Density of straight-line 1-planar graph drawings. Inf. Process. Lett. 113, 236–240 (2013)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412, 5156–5166 (2011)Google Scholar
  6. 6.
    Eades, P., Liotta, G.: Right angle crossing graphs and \(1\)-planarity. Discrete Appl. Math. 161, 961–969 (2013)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Fox, J., Pach, J., Suk, A.: The number of edges in \(k\)-quasi-planar graphs. SIAM J. Discrete Math. 27, 550–561 (2013)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49, 1–11 (2007)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for \(1\)-planar graphs. In: Proceedings of 18th Annual International Computing and Combinatorics Conference (COCOON), pp. 335–346 (2012)Google Scholar
  10. 10.
    Pach, J., Pinchasi, R., Sharir, M., Tóth, G.: Topological graphs with no large grids. Graphs Comb 21, 355–364 (2005)CrossRefMATHGoogle Scholar
  11. 11.
    Pach, J., Radoicic, R., Tardos, G., Tóth, G.: Improving the crossing lemma by finding more crossings in sparse graphs. Discrete Comput. Geom. 36, 527–552 (2006)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Pach, J., Radoicic, R., Tóth, G.: Relaxing planarity for topological graphs. In: Proceedings of the Japan Conference on Discrete and Computational Geometry, pp. 221–232 (2002)Google Scholar
  13. 13.
    Pach, J., Shahrokhi, F., Szegedy, M.: Applications of the crossing number. In: Proceeding of 10th Annual Symposium on Computational Geometry, pp. 198–202 (1994)Google Scholar
  14. 14.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17, 427–439 (1997)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Otfried Cheong
    • 1
  • Sariel Har-Peled
    • 2
  • Heuna Kim
    • 3
  • Hyo-Sil Kim
    • 4
  1. 1.Department of Computer ScienceKAISTDaejeonKorea
  2. 2.Department of Computer ScienceUniversity of IllinoisUrbanaUSA
  3. 3.Freie Universität BerlinBerlinGermany
  4. 4.Department of Computer Science and EngineeringPOSTECHPohangKorea

Personalised recommendations