Advertisement

Algorithmica

, Volume 70, Issue 3, pp 406–427 | Cite as

The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes

  • Jean-Daniel Boissonnat
  • Clément Maria
Article

Abstract

This paper introduces a new data structure, called simplex tree, to represent abstract simplicial complexes of any dimension. All faces of the simplicial complex are explicitly stored in a trie whose nodes are in bijection with the faces of the complex. This data structure allows to efficiently implement a large range of basic operations on simplicial complexes. We provide theoretical complexity analysis as well as detailed experimental results. We more specifically study Rips and witness complexes.

Keywords

Simplicial complexes Data structure Computational topology  Flag complexes Witness complexes 

Notes

Acknowledgments

The authors thanks A. Ghosh, S. Hornus, D. Morozov and P. Skraba for discussions that led to the idea of representing simplicial complexes by tries. They especially thank S. Hornus for sharing his notes with us. They also thank S. Martin and V. Coutsias for providing the cyclo-octane data set. This research has been partially supported by the 7th Framework Programme for Research of the European Commission, under FET-Open Grant Number 255827 (CGL Computational Geometry Learning).

References

  1. 1.
    Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient reverse k-nearest neighbor search in arbitrary metric spaces. In: SIGMOD Conference, pp. 515–526 (2006)Google Scholar
  2. 2.
    Attali, D., Lieutier, A., Salinas, D.: Efficient data structure for representing and simplifying simplicial complexes in high dimensions. Int. J. Comput. Geom. Appl. 22(4), 279–304 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Attali, D., Lieutier, A., Salinas, D.: Vietoris-rips complexes also provide topologically correct reconstructions of sampled shapes. Comput. Geom. 46(4), 448–465 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In: SODA, pp. 360–369 (1997)Google Scholar
  5. 5.
    Boissonnat, J.-D., Dey, T.K., Maria, C.: The compressed annotation matrix: an efficient data structure for computing persistent cohomology. In: ESA (2013)Google Scholar
  6. 6.
    Boissonnat, J.-D., Guibas, L.J., Oudot, S.: Manifold reconstruction in arbitrary dimensions using witness complexes. Discret. Comput. Geom. 42(1), 37–70 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Boissonnat, J.-D., Maria, C.: The simplex tree: an efficient data structure for general simplicial complexes. In: ESA, pp. 731–742 (2012)Google Scholar
  8. 8.
    Brisson, E.: Representing geometric structures in d dimensions: Topology and order. Discret. Comput. Geom. 9, 387–426 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008)CrossRefGoogle Scholar
  10. 10.
    Chazal, F., Oudot, S.: Towards persistence-based reconstruction in euclidean spaces. In: SoCG, pp. 232–241 (2008)Google Scholar
  11. 11.
    de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Eurographics Symposium on Point-Based Graphics (2004)Google Scholar
  12. 12.
    Dey, T.K., Fan, F., Wang, Y.: Computing Topological Persistence for Simplicial Maps. CoRR, abs/1208.5018 (2012)Google Scholar
  13. 13.
    Edelsbrunner, H., Harer, J.: Computational Topology—An Introduction. American Mathematical Society, Providence, RI (2010)zbMATHGoogle Scholar
  14. 14.
    Jacobson, G.: Space-efficient static trees and graphs. In: FOCS, pp. 549–554 (1989)Google Scholar
  15. 15.
    Lee, A.B., Pedersen, K.S., Mumford, D.: The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54(1–3), 83–103 (2003)zbMATHCrossRefGoogle Scholar
  16. 16.
    Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. Int. J. Comput. Geometry Appl. 4(3), 275–324 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Martin, S., Thompson, A., Coutsias, E.A., Watson, J.-P.: Topology of cyclo-octane energy landscape. J. Chem. Phys. 132(23), 234115 (2010)Google Scholar
  18. 18.
  19. 19.
    Mount, D.M., Arya, S.: ANN: Approximate Nearest Neighbors Library. http://www.cs.sunysb.edu/algorith/implement/ANN/implement.shtml
  20. 20.
    Sexton, H., Johansson, M.V.: JPlex, 2009. http://comptop.stanford.edu/programs/jplex/
  21. 21.
    SGI. Standard template library programmer’s guide. http://www.sgi.com/tech/stl/
  22. 22.
    The Stanford 3d scanning repository. http://graphics.stanford.edu/data/3Dscanrep/
  23. 23.
    Zomorodian, A.: The tidy set: a minimal simplicial set for computing homology of clique complexes. In: SoCG, pp. 257–266 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.INRIA Sophia Antipolis-MéditerranéeSophia Antipolis CedexFrance

Personalised recommendations