# Parameterized Complexity of Induced Graph Matching on Claw-Free Graphs

- 293 Downloads
- 1 Citations

## Abstract

The Induced Graph Matching problem asks to find \(k\) disjoint induced subgraphs isomorphic to a given graph \(H\) in a given graph \(G\) such that there are no edges between vertices of different subgraphs. This problem generalizes the classical Independent Set and Induced Matching problems, among several other problems. We show that Induced Graph Matching is fixed-parameter tractable in \(k\) on claw-free graphs when \(H\) is a fixed connected graph, and even admits a polynomial kernel when \(H\) is a complete graph. Both results rely on a new, strong, and generic algorithmic structure theorem for claw-free graphs. Complementing the above positive results, we prove \(\mathsf {W}[1]\)-hardness of Induced Graph Matching on graphs excluding \(K_{1,4}\) as an induced subgraph, for any fixed complete graph \(H\). In particular, we show that Independent Set is \(\mathsf {W}[1]\)-hard on \(K_{1,4}\)-free graphs. Finally, we consider the complexity of Induced Graph Matching on a large subclass of claw-free graphs, namely on proper circular-arc graphs. We show that the problem is either polynomial-time solvable or \(\mathsf {NP}\)-complete, depending on the connectivity of \(H\) and the structure of \(G\).

## Keywords

Algorithms and data structures Induced matchings Claw-free graphs Fixed-parameter tractability## Notes

### Acknowledgments

We thank the anonymous reviewers for helpful remarks improving the presentation of this manuscript.

## References

- 1.Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM
**42**(4), 844–856 (1995)CrossRefMATHMathSciNetGoogle Scholar - 2.Cameron, K., Hell, P.: Independent packings in structured graphs. Math. Program.
**105**(2–3), 201–213 (2006)CrossRefMATHMathSciNetGoogle Scholar - 3.Chudnovsky, M., Ovetsky, A.: Coloring quasi-line graphs. J. Graph Theory
**54**(1), 41–50 (2007)CrossRefMATHMathSciNetGoogle Scholar - 4.Chudnovsky, M., Seymour, P.D.: The structure of claw-free graphs. Surveys in Comb.
**327**, 153–171 (2005)MathSciNetGoogle Scholar - 5.Chudnovsky, M., Seymour, P.D.: Claw-free graph. I. Orientable prismatic graphs. J. Comb. Theory Ser. B
**97**(6), 1373–1410 (2007)CrossRefMathSciNetGoogle Scholar - 6.Chudnovsky, M., Seymour, P.D.: Claw-free graph. II. Non-orientable prismatic graphs. J. Comb. Theory Ser. B
**98**(2), 249–290 (2008)CrossRefMATHMathSciNetGoogle Scholar - 7.Chudnovsky, M., Seymour, P.D.: Claw-free graph. III. Circular interval graphs. J. Comb. Theory Ser. B
**98**(4), 812–834 (2008)CrossRefMATHMathSciNetGoogle Scholar - 8.Chudnovsky, M., Seymour, P.D.: Claw-free graph. IV. Decomposition theorem. J. Comb. Theory Ser. B
**98**(5), 839–938 (2008)CrossRefMATHMathSciNetGoogle Scholar - 9.Chudnovsky, M., Seymour, P.D.: Claw-free graph. V. Global structure. J. Comb. Theory Ser. B
**98**(6), 1373–1410 (2008)CrossRefMATHMathSciNetGoogle Scholar - 10.Chudnovsky, M., Seymour, P.D.: Claw-free graph. VI. Coloring. J. Comb. Theory Ser. B
**100**(6), 560–572 (2010)CrossRefMATHMathSciNetGoogle Scholar - 11.Chudnovsky, M., Seymour, P.D.: Claw-free graph. VII. Quasi-line graphs. J. Comb. Theory Ser. B
**102**(6), 1267–1294 (2012)CrossRefMATHMathSciNetGoogle Scholar - 12.Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating set is fixed parameter tractable in claw-free graphs. Theor. Comput. Sci.
**412**(50), 6982–7000 (2011)CrossRefMATHMathSciNetGoogle Scholar - 13.Damaschke, P.: Induced subgraph isomorphism for cographs is \({\sf NP}\)-complete. In: Graph-Theoretic Concepts in Computer Science (WG 1990), Lecture Notes in Computer Science, vol. 484, pp. 72–78 (1991)Google Scholar
- 14.Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 68–81 (2012)Google Scholar
- 15.Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 16.Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free graphs leading to an \(O(n^3)\)-algorithm for the weighted stable set problem. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2011), pp. 630–646 (2011)Google Scholar
- 17.Faudree, R.J., Flandrin, E., Ryjácek, Z.: Claw-free graphs: a survey. Discret. Math.
**164**(1–3), 87–147 (1997)CrossRefMATHGoogle Scholar - 18.Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.
**410**(1), 53–61 (2009)CrossRefMATHMathSciNetGoogle Scholar - 19.Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F.A., Stege, U., Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems. Algorithmica
**52**(2), 167–176 (2008)CrossRefMATHMathSciNetGoogle Scholar - 20.Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of \({\sf NP}\)-Completeness. Freeman, San Francisco (1979)Google Scholar
- 21.Golovach, P., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in AT-free graphs. In: Algorithm Theory (SWAT 2012), Lecture Notes in Computer Science, vol. 7357, pp. 153–164 (2012)Google Scholar
- 22.Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in claw-free graphs. In: Algorithms (ESA 2012), Lecture Notes in Computer Science, vol. 7501, pp. 515–526 (2012)Google Scholar
- 23.Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput. Sci.
**234**, 59–84 (2000)CrossRefMATHMathSciNetGoogle Scholar - 24.Heggernes, P., van, ’t Hof, P., Meister, D., Villanger, Y.: The induced subgraph isomorphism problem on proper interval graphs and bipartite permutation graphs. Preprint (2012).Google Scholar
- 25.Heggernes, P., Meister, D., Villanger, Y.: Induced subgraph isomorphism on interval and proper interval graphs. In: Algorithms and Computation (ISAAC 2010), Lecture Notes in Computer Science, vol. 6507, pp. 399–409 (2010)Google Scholar
- 26.Hermelin, D., Mnich, M., van Leeuwen, E.J.: Parameterized complexity of induced \(H\)-matching in claw-free graphs. In: Algorithms (ESA 2012), Lecture Notes in Computer Science, vol. 7501, pp. 624–635 (2012)Google Scholar
- 27.Hermelin, D., Mnich, M., van Leeuwen, E.J., Woeginger, G.J.: Domination when the stars are out. In: Automata, Languages and Programming (ICALP 2011), Lecture Notes in Computer Science, vol. 6755, pp. 462–473 (2011)Google Scholar
- 28.Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial lower bounds for kernelization. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 104–113 (2012)Google Scholar
- 29.King, A.D., Reed, B.A.: Bounding \(\chi \) in terms of \(\omega \) and \(\Delta \) for quasi-line graphs. J. Graph Theory
**59**(3), 215–228 (2008)CrossRefMATHMathSciNetGoogle Scholar - 30.Kirkpatrick, D., Hell, P.: On the complexity of general graph factor problems. SIAM J. Comput.
**12**(3), 601–609 (1983)CrossRefMATHMathSciNetGoogle Scholar - 31.Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: Graph-Theoretic Concepts in Computer Science (WG 2006), Lecture Notes in Computer Science, vol. 4271, pp. 58–67 (2006).Google Scholar
- 32.Kobler, D., Rotics, U.: Finding maximum induced matchings in subclasses of claw-free and \(P_{5}\)-free graphs, and in graphs with matching and induced matching of equal maximum size. Algorithmica
**37**(4), 327–346 (2003)CrossRefMATHMathSciNetGoogle Scholar - 33.Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Normal Helly circular-arc graphs and its subclasses. Discret. Appl. Math.
**161**(7–8), 1037–1059 (2013)CrossRefMATHMathSciNetGoogle Scholar - 34.Maier, D., Storer, J.A.: A note on the complexity of the superstring problem. Technical Report 233, Computer Science Laboratory, Princeton University (1977).Google Scholar
- 35.Marx, D.: Efficient approximation schemes for geometric problems? In: Algorithms (ESA 2005), Lecture Notes in Computer Science, vol. 3669, pp. 448–459 (2005)Google Scholar
- 36.McKee, T.A.: Restricted circular-arc graphs and clique cycles. Discret. Math.
**263**(1–3), 221–231 (2003)CrossRefMATHMathSciNetGoogle Scholar - 37.Moser, H.: A problem kernelization for graph packing. In: Theory and Practice of Computer Science (SOFSEM 2009), Lecture Notes in Computer Science, vol. 5404, pp. 401–412 (2009)Google Scholar
- 38.Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs. J. Discret. Algorithms
**7**(2), 181–190 (2009)CrossRefMATHMathSciNetGoogle Scholar - 39.Oriolo, G., Pietropaoli, U., Stauffer, G.: On the recognition of fuzzy circular interval graphs. Discret. Math.
**312**(8), 1426–1435 (2012)CrossRefMATHMathSciNetGoogle Scholar - 40.Prieto, E., Sloper, C.: Looking at the stars. Theor. Comput. Sci.
**351**(3), 437–445 (2006)CrossRefMATHMathSciNetGoogle Scholar - 41.Roussopoulos, N.: A \(\max \{m, n\}\) algorithm for determining the graph \(H\) from its line graph \(G\). Inf. Process. Lett.
**2**(4), 108–112 (1973)CrossRefMATHMathSciNetGoogle Scholar - 42.Spinrad, J.R.: Efficient graph representations, Field Institute Monographs, vol. 19, American Mathematical Society (2003)Google Scholar
- 43.Whitney, H.: Congruent graphs and the connectivity of graphs. American J. Math.
**54**, 150–168 (1932)CrossRefMathSciNetGoogle Scholar