Advertisement

Algorithmica

, Volume 70, Issue 3, pp 513–560 | Cite as

Parameterized Complexity of Induced Graph Matching on Claw-Free Graphs

  • Danny Hermelin
  • Matthias Mnich
  • Erik Jan van Leeuwen
Article

Abstract

The Induced Graph Matching problem asks to find \(k\) disjoint induced subgraphs isomorphic to a given graph \(H\) in a given graph \(G\) such that there are no edges between vertices of different subgraphs. This problem generalizes the classical Independent Set and Induced Matching problems, among several other problems. We show that Induced Graph Matching is fixed-parameter tractable in \(k\) on claw-free graphs when \(H\) is a fixed connected graph, and even admits a polynomial kernel when \(H\) is a complete graph. Both results rely on a new, strong, and generic algorithmic structure theorem for claw-free graphs. Complementing the above positive results, we prove \(\mathsf {W}[1]\)-hardness of Induced Graph Matching on graphs excluding \(K_{1,4}\) as an induced subgraph, for any fixed complete graph \(H\). In particular, we show that Independent Set is \(\mathsf {W}[1]\)-hard on \(K_{1,4}\)-free graphs. Finally, we consider the complexity of Induced Graph Matching on a large subclass of claw-free graphs, namely on proper circular-arc graphs. We show that the problem is either polynomial-time solvable or \(\mathsf {NP}\)-complete, depending on the connectivity of \(H\) and the structure of \(G\).

Keywords

Algorithms and data structures Induced matchings Claw-free graphs Fixed-parameter tractability 

Notes

Acknowledgments

We thank the anonymous reviewers for helpful remarks improving the presentation of this manuscript.

References

  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Cameron, K., Hell, P.: Independent packings in structured graphs. Math. Program. 105(2–3), 201–213 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Chudnovsky, M., Ovetsky, A.: Coloring quasi-line graphs. J. Graph Theory 54(1), 41–50 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chudnovsky, M., Seymour, P.D.: The structure of claw-free graphs. Surveys in Comb. 327, 153–171 (2005)MathSciNetGoogle Scholar
  5. 5.
    Chudnovsky, M., Seymour, P.D.: Claw-free graph. I. Orientable prismatic graphs. J. Comb. Theory Ser. B 97(6), 1373–1410 (2007)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chudnovsky, M., Seymour, P.D.: Claw-free graph. II. Non-orientable prismatic graphs. J. Comb. Theory Ser. B 98(2), 249–290 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chudnovsky, M., Seymour, P.D.: Claw-free graph. III. Circular interval graphs. J. Comb. Theory Ser. B 98(4), 812–834 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chudnovsky, M., Seymour, P.D.: Claw-free graph. IV. Decomposition theorem. J. Comb. Theory Ser. B 98(5), 839–938 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Chudnovsky, M., Seymour, P.D.: Claw-free graph. V. Global structure. J. Comb. Theory Ser. B 98(6), 1373–1410 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Chudnovsky, M., Seymour, P.D.: Claw-free graph. VI. Coloring. J. Comb. Theory Ser. B 100(6), 560–572 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Chudnovsky, M., Seymour, P.D.: Claw-free graph. VII. Quasi-line graphs. J. Comb. Theory Ser. B 102(6), 1267–1294 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating set is fixed parameter tractable in claw-free graphs. Theor. Comput. Sci. 412(50), 6982–7000 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Damaschke, P.: Induced subgraph isomorphism for cographs is \({\sf NP}\)-complete. In: Graph-Theoretic Concepts in Computer Science (WG 1990), Lecture Notes in Computer Science, vol. 484, pp. 72–78 (1991)Google Scholar
  14. 14.
    Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 68–81 (2012)Google Scholar
  15. 15.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free graphs leading to an \(O(n^3)\)-algorithm for the weighted stable set problem. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2011), pp. 630–646 (2011)Google Scholar
  17. 17.
    Faudree, R.J., Flandrin, E., Ryjácek, Z.: Claw-free graphs: a survey. Discret. Math. 164(1–3), 87–147 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F.A., Stege, U., Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems. Algorithmica 52(2), 167–176 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of \({\sf NP}\)-Completeness. Freeman, San Francisco (1979)Google Scholar
  21. 21.
    Golovach, P., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in AT-free graphs. In: Algorithm Theory (SWAT 2012), Lecture Notes in Computer Science, vol. 7357, pp. 153–164 (2012)Google Scholar
  22. 22.
    Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in claw-free graphs. In: Algorithms (ESA 2012), Lecture Notes in Computer Science, vol. 7501, pp. 515–526 (2012)Google Scholar
  23. 23.
    Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput. Sci. 234, 59–84 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Heggernes, P., van, ’t Hof, P., Meister, D., Villanger, Y.: The induced subgraph isomorphism problem on proper interval graphs and bipartite permutation graphs. Preprint (2012).Google Scholar
  25. 25.
    Heggernes, P., Meister, D., Villanger, Y.: Induced subgraph isomorphism on interval and proper interval graphs. In: Algorithms and Computation (ISAAC 2010), Lecture Notes in Computer Science, vol. 6507, pp. 399–409 (2010)Google Scholar
  26. 26.
    Hermelin, D., Mnich, M., van Leeuwen, E.J.: Parameterized complexity of induced \(H\)-matching in claw-free graphs. In: Algorithms (ESA 2012), Lecture Notes in Computer Science, vol. 7501, pp. 624–635 (2012)Google Scholar
  27. 27.
    Hermelin, D., Mnich, M., van Leeuwen, E.J., Woeginger, G.J.: Domination when the stars are out. In: Automata, Languages and Programming (ICALP 2011), Lecture Notes in Computer Science, vol. 6755, pp. 462–473 (2011)Google Scholar
  28. 28.
    Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial lower bounds for kernelization. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 104–113 (2012)Google Scholar
  29. 29.
    King, A.D., Reed, B.A.: Bounding \(\chi \) in terms of \(\omega \) and \(\Delta \) for quasi-line graphs. J. Graph Theory 59(3), 215–228 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Kirkpatrick, D., Hell, P.: On the complexity of general graph factor problems. SIAM J. Comput. 12(3), 601–609 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: Graph-Theoretic Concepts in Computer Science (WG 2006), Lecture Notes in Computer Science, vol. 4271, pp. 58–67 (2006).Google Scholar
  32. 32.
    Kobler, D., Rotics, U.: Finding maximum induced matchings in subclasses of claw-free and \(P_{5}\)-free graphs, and in graphs with matching and induced matching of equal maximum size. Algorithmica 37(4), 327–346 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Normal Helly circular-arc graphs and its subclasses. Discret. Appl. Math. 161(7–8), 1037–1059 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Maier, D., Storer, J.A.: A note on the complexity of the superstring problem. Technical Report 233, Computer Science Laboratory, Princeton University (1977).Google Scholar
  35. 35.
    Marx, D.: Efficient approximation schemes for geometric problems? In: Algorithms (ESA 2005), Lecture Notes in Computer Science, vol. 3669, pp. 448–459 (2005)Google Scholar
  36. 36.
    McKee, T.A.: Restricted circular-arc graphs and clique cycles. Discret. Math. 263(1–3), 221–231 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Moser, H.: A problem kernelization for graph packing. In: Theory and Practice of Computer Science (SOFSEM 2009), Lecture Notes in Computer Science, vol. 5404, pp. 401–412 (2009)Google Scholar
  38. 38.
    Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs. J. Discret. Algorithms 7(2), 181–190 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Oriolo, G., Pietropaoli, U., Stauffer, G.: On the recognition of fuzzy circular interval graphs. Discret. Math. 312(8), 1426–1435 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Prieto, E., Sloper, C.: Looking at the stars. Theor. Comput. Sci. 351(3), 437–445 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Roussopoulos, N.: A \(\max \{m, n\}\) algorithm for determining the graph \(H\) from its line graph \(G\). Inf. Process. Lett. 2(4), 108–112 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Spinrad, J.R.: Efficient graph representations, Field Institute Monographs, vol. 19, American Mathematical Society (2003)Google Scholar
  43. 43.
    Whitney, H.: Congruent graphs and the connectivity of graphs. American J. Math. 54, 150–168 (1932)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Danny Hermelin
    • 1
  • Matthias Mnich
    • 2
  • Erik Jan van Leeuwen
    • 3
  1. 1.Ben-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Cluster of Excellence MMCISaarbrückenGermany
  3. 3.Max-Planck Institut für InformatikSaarbrückenGermany

Personalised recommendations