Algorithmica

, Volume 72, Issue 3, pp 758–777 | Cite as

k-Chordal Graphs: From Cops and Robber to Compact Routing via Treewidth

Article

Abstract

Cops and robber games, introduced by Winkler and Nowakowski (in Discrete Math. 43(2–3), 235–239, 1983) and independently defined by Quilliot (in J. Comb. Theory, Ser. B 38(1), 89–92, 1985), concern a team of cops that must capture a robber moving in a graph. We consider the class of k-chordal graphs, i.e., graphs with no induced (chordless) cycle of length greater than k, k≥3. We prove that k−1 cops are always sufficient to capture a robber in k-chordal graphs. This leads us to our main result, a new structural decomposition for a graph class including k-chordal graphs.

We present a polynomial-time algorithm that, given a graph G and k≥3, either returns an induced cycle larger than k in G, or computes a tree-decomposition of G, each bag of which contains a dominating path with at most k−1 vertices. This allows us to prove that any k-chordal graph with maximum degree Δ has treewidth at most (k−1)(Δ−1)+2, improving the O(Δ(Δ−1)k−3) bound of Bodlaender and Thilikos (Discrete Appl. Math. 79(1–3), 45–61, 1997. Moreover, any graph admitting such a tree-decomposition has small hyperbolicity).

As an application, for any n-vertex graph admitting such a tree-decomposition, we propose a compact routing scheme using routing tables, addresses and headers of size O(klogΔ+logn) bits and achieving an additive stretch of O(klogΔ). As far as we know, this is the first routing scheme with O(klogΔ+logn)-routing tables and small additive stretch for k-chordal graphs.

Keywords

Treewidth Chordality Compact routing Cops and robber games 

References

  1. 1.
    Abraham, I., Gavoille, C.: Object location using path separators. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC ’06, pp. 188–197. ACM, New York (2006) CrossRefGoogle Scholar
  2. 2.
    Abraham, I., Malkhi, D.: Name independent routing for growth bounded networks. In: Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’05, pp. 49–55. ACM, New York (2005) Google Scholar
  3. 3.
    Abraham, I., Gavoille, C., Malkhi, D.: Compact routing for graphs excluding a fixed minor. In: Distributed Computing. Lecture Notes in Computer Science, vol. 3724, pp. 442–456. Springer, Berlin (2005) CrossRefGoogle Scholar
  4. 4.
    Abraham, I., Gavoille, C., Goldberg, A.V., Malkhi, D.: Routing in networks with low doubling dimension. In: 26th IEEE International Conference on Distributed Computing Systems, 2006. ICDCS 2006, p. 75 (2006) Google Scholar
  5. 5.
    Abraham, I., Gavoille, C., Malkhi, D.: On space-stretch trade-offs: lower bounds. In: Proceedings of the Eighteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’06, pp. 207–216. ACM, New York (2006) Google Scholar
  6. 6.
    Abraham, I., Gavoille, C., Malkhi, D., Nisan, N., Thorup, M.: Compact name-independent routing with minimum stretch. ACM Trans. Algorithms 4(3), 37–13712 (2008) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8(1), 1–12 (1984) MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Aksoy, A.G., Jin, S.: The apple doesn’t fall far from the (metric) tree: the equivalence of definitions (2013). arXiv:1306.6092
  9. 9.
    Andreae, T.: On a pursuit game played on graphs for which a minor is excluded. J. Comb. Theory, Ser. B 41(1), 37–47 (1986) MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebr. Discrete Methods 8(2), 277–284 (1987). http://epubs.siam.org/doi/pdf/10.1137/0608024 MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Bandelt, H., Chepoi, V.: 1-hyperbolic graphs. SIAM J. Discrete Math. 16(2), 323–334 (2003). http://epubs.siam.org/doi/pdf/10.1137/S0895480100380902 MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996) MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998) MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996) MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Bodlaender, H.L., Möhring, R.: The pathwidth and treewidth of cographs. SIAM J. Discrete Math. 6(2), 181–188 (1993). http://epubs.siam.org/doi/pdf/10.1137/0406014 MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Bodlaender, H.L., Thilikos, D.M.: Treewidth for graphs with small chordality. Discrete Appl. Math. 79(1–3), 45–61 (1997) MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Bonato, A., Nowakovski, R.: The Game of Cops and Robber on Graphs. American Math. Soc., Providence (2011) CrossRefGoogle Scholar
  18. 18.
    Cai, L., Chan, S.M., Chan, S.O.: Random separation: a new method for solving fixed-cardinality optimization problems. In: Proceedings 2nd International Workshop on Parameterized and Exact Computation, IWPEC 2006, pp. 239–250. Springer, Berlin (2006) Google Scholar
  19. 19.
    Chalopin, J., Chepoi, V., Nisse, N., Vaxès, Y.: Cop and robber games when the robber can hide and ride. SIAM J. Discrete Math. 25(1), 333–359 (2011). http://epubs.siam.org/doi/pdf/10.1137/100784035 MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Chen, Y., Flum, J.: On parameterized path and chordless path problems. In: Twenty-Second Annual IEEE Conference on Computational Complexity, 2007, CCC ’07, pp. 250–263 (2007) Google Scholar
  21. 21.
    Chen, W., Sommer, C., Teng, S.-H., Wang, Y.: Compact routing in power-law graphs. In: Distributed Computing. Lecture Notes in Computer Science, vol. 5805, pp. 379–391. Springer, Berlin (2009) CrossRefGoogle Scholar
  22. 22.
    Chepoi, V., Dragan, F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs. In: Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry, SCG ’08, pp. 59–68. ACM, New York (2008) CrossRefGoogle Scholar
  23. 23.
    Chepoi, V., Dragan, F., Estellon, B., Habib, M., Vaxès, Y., Xiang, Y.: Additive spanners and distance and routing labeling schemes for hyperbolic graphs. Algorithmica 62(3–4), 713–732 (2012) MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Clarke, N.E., Nowakowski, R.J.: Tandem-win graphs. Discrete Math. 299(1–3), 56–64 (2005) MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theor. Comput. Sci. 109(1–2), 49–82 (1993) MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    de Montgolfier, F., Soto, M., Viennot, L.: Treewidth and hyperbolicity of the Internet. In: 10th IEEE International Symposium on Network Computing and Applications (NCA), pp. 25–32 (2011) Google Scholar
  27. 27.
    Dourisboure, Y.: Compact routing schemes for generalised chordal graphs. J. Graph Algorithms Appl. 9(2), 277–297 (2005) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Math. 307(16), 2008–2029 (2007) MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Fraigniaud, P., Gavoille, C.: Routing in trees. In: Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 2076, pp. 757–772. Springer, Berlin (2001) CrossRefGoogle Scholar
  30. 30.
    Frankl, P.: Cops and robbers in graphs with large Girth and Cayley graphs. Discrete Appl. Math. 17(3), 301–305 (1987) MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Gromov, M.: Hyperbolic groups. Essays Group Theory 8, 75–263 (1987) MathSciNetGoogle Scholar
  32. 32.
    Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973) CrossRefGoogle Scholar
  33. 33.
    Kloks, T., Kratsch, D.: Treewidth of chordal bipartite graphs. J. Algorithms 19(2), 266–281 (1995) MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Kobayashi, Y., Kawarabayashi, K.-i.: Algorithms for finding an induced cycle in planar graphs and bounded genus graphs. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pp. 1146–1155 (2009) CrossRefGoogle Scholar
  35. 35.
    Konjevod, G., Richa, A.W., Xia, D.: Optimal-stretch name-independent compact routing in doubling metrics. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC ’06, pp. 198–207. ACM, New York (2006) CrossRefGoogle Scholar
  36. 36.
    Kosowski, A., Li, B., Nisse, N., Suchan, K.: k-chordal graphs: from cops and robber to compact routing via treewidth. In: Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 7392, pp. 610–622. Springer, Berlin (2012) CrossRefGoogle Scholar
  37. 37.
    Krioukov, D., Papadopoulos, F., Boguñá, M., Vahdat, A.: Greedy forwarding in scale-free networks embedded in hyperbolic metric spaces. ACM SIGMETRICS Perform. Eval. Rev. 37(2), 15–17 (2009) CrossRefGoogle Scholar
  38. 38.
    Lokshtanov, D.: On the complexity of computing treelength. Discrete Appl. Math. 158(7), 820–827 (2010) MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Lu, L., Peng, X.: On Meyniel’s conjecture of the cop number. J. Graph Theory 71(2), 192–205 (2012) MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Nisse, N., Rapaport, I., Suchan, K.: Distributed computing of efficient routing schemes in generalized chordal graphs. Theor. Comput. Sci. 444, 17–27 (2012) MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math. 43(2–3), 235–239 (1983) MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009) CrossRefGoogle Scholar
  43. 43.
    Quilliot, A.: A short note about pursuit games played on a graph with a given genus. J. Comb. Theory, Ser. B 38(1), 89–92 (1985) MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B 36(1), 49–64 (1984) MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Schröder, B.S.W.: The copnumber of a graph is bounded by \(\lfloor\frac{3}{2} \mathit{genus}({G})\rfloor+ 3\). In: Categorical Perspectives. Trends in Mathematics, pp. 243–263. Birkhäuser, Boston (2001) CrossRefGoogle Scholar
  46. 46.
    Scott, A., Sudakov, B.: A bound for the cops and robbers problem. SIAM J. Discrete Math. 25(3), 1438–1442 (2011). http://epubs.siam.org/doi/pdf/10.1137/100812963 MATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Sundaram, R., Singh, K., Rangan, C.: Treewidth of circular-arc graphs. SIAM J. Discrete Math. 7(4), 647–655 (1994). http://epubs.siam.org/doi/pdf/10.1137/S0895480191193789 MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Uehara, R.: Tractable and intractable problems on generalized chordal graphs. Technical Report COMP98-83, IEICE (1999) Google Scholar
  49. 49.
    Watts, D.J., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998) CrossRefGoogle Scholar
  50. 50.
    Wu, Y., Zhang, C.: Hyperbolicity and chordality of a graph. Electron. J. Comb. 18(1) (2011) Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CEPAGEINRIA, LaBRITalenceFrance
  2. 2.Coati ProjectINRIA, I3S(CNRS/UNS)Sophia AntipolisFrance
  3. 3.Institute of Applied Mathematics, AAMSCASBeijingChina
  4. 4.FICUniversidad Adolfo IbáñezSantiagoChile
  5. 5.WMS, AGHUniversity of Science and TechnologyKrakowPoland

Personalised recommendations