Algorithmica

, Volume 71, Issue 4, pp 1007–1020 | Cite as

Data Structures on Event Graphs

Article
  • 189 Downloads

Abstract

We investigate the behavior of data structures when the input and operations are generated by an event graph. This model is inspired by Markov chains. We are given a fixed graph G, whose nodes are annotated with operations of the type insert, delete, and query. The algorithm responds to the requests as it encounters them during a (random or adversarial) walk in G. We study the limit behavior of such a walk and give an efficient algorithm for recognizing which structures can be generated. We also give a near-optimal algorithm for successor searching if the event graph is a cycle and the walk is adversarial. For a random walk, the algorithm becomes optimal.

Keywords

Successor searching Markov Chain Low entropy Data Structure 

References

  1. 1.
    Chassaing, P.: Optimality of move-to-front for self-organizing data structures with locality of references. Ann. Appl. Probab. 3(4), 1219–1240 (1993) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, Cambridge (2000) CrossRefGoogle Scholar
  3. 3.
    Chazelle, B., Mulzer, W.: Markov incremental constructions. Discrete Comput. Geom. 42(3), 399–420 (2009) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Tischler, G., Wale, T.: Improved algorithms for the range next value problem and applications. Theor. Comput. Sci. 434, 23–34 (2012) CrossRefMATHGoogle Scholar
  5. 5.
    van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Inf. Process. Lett. 6(3), 80–82 (1977) CrossRefMATHGoogle Scholar
  6. 6.
    van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Math. Syst. Theory 10(2), 99–127 (1976) CrossRefGoogle Scholar
  7. 7.
    Hotz, G.: Search trees and search graphs for Markov sources. Elektron. Inf.verarb. Kybern. 29(5), 283–292 (1993) MATHGoogle Scholar
  8. 8.
    Kapoor, S., Reingold, E.M.: Stochastic rearrangement rules for self-organizing data structures. Algorithmica 6(2), 278–291 (1991) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM J. Comput. 30(3), 906–922 (2000) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Konneker, L.K., Varol, Y.L.: A note on heuristics for dynamic organization of data structures. Inf. Process. Lett. 12(5), 213–216 (1981) CrossRefGoogle Scholar
  11. 11.
    Lam, K., Leung, M.Y., Siu, M.K.: Self-organizing files with dependent accesses. J. Appl. Probab. 21(2), 343–359 (1984) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. Am. Math. Soc., Providence (2009) MATHGoogle Scholar
  13. 13.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) CrossRefMATHGoogle Scholar
  14. 14.
    Mulzer, W.: A note on predecessor searching in the pointer machine model. Inf. Process. Lett. 109(13), 726–729 (2009) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Phatarfod, R.M., Pryde, A.J., Dyte, D.: On the move-to-front scheme with Markov dependent requests. J. Appl. Probab. 34(3), 790–794 (1997) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Schulz, F., Schömer, E.: Self-organizing data structures with dependent accesses. In: Proceedings of the 23rd International Colloquium on Automata, Languages, and Programming (ICALP), pp. 526–537 (1996) CrossRefGoogle Scholar
  17. 17.
    Shedler, G.S., Tung, C.: Locality in page reference strings. SIAM J. Comput. 1(3), 218–241 (1972) CrossRefMATHGoogle Scholar
  18. 18.
    Vitter, J.S., Krishnan, P.: Optimal prefetching via data compression. J. ACM 43(5), 771–793 (1996) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA
  2. 2.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations