Algorithmica

, Volume 71, Issue 4, pp 989–1006 | Cite as

Faster Parameterized Algorithms for Deletion to Split Graphs

  • Esha Ghosh
  • Sudeshna Kolay
  • Mrinal Kumar
  • Pranabendu Misra
  • Fahad Panolan
  • Ashutosh Rai
  • M. S. Ramanujan
Article

Abstract

An undirected graph is said to be split if its vertex set can be partitioned into two sets such that the subgraph induced on one of them is a complete graph and the subgraph induced on the other is an independent set. We initiate a systematic study of parameterized complexity of the problem of deleting the minimum number of vertices or edges from a given input graph so that the resulting graph is split. We give efficient fixed-parameter algorithms and polynomial sized kernels for the problem. More precisely,
  1. 1.

    for Split Vertex Deletion, the problem of determining whether there are k vertices whose deletion results in a split graph, we give an \({\mathcal{O}}^{*}(2^{k})\) algorithm (\({\mathcal{O}}^{*}()\) notation hides factors that are polynomial in the input size) improving on the previous best bound of \({\mathcal{O}}^{*} (2.32^{k})\). We also give an \({\mathcal{O}}(k^{3})\)-sized kernel for the problem.

     
  2. 2.

    For Split Edge Deletion, the problem of determining whether there are k edges whose deletion results in a split graph, we give an \({\mathcal{O}}^{*}( 2^{ {\mathcal{O}}(\sqrt{k}\log k) } )\) algorithm. We also prove the existence of an \({\mathcal{O}}(k^{2})\) kernel.

     
In addition, we note that our algorithm for Split Edge Deletion adds to the small number of subexponential parameterized algorithms not obtained through bidimensionality (Demaine et al. in J. ACM 52(6): 866–893, 2005), and on general graphs.

Keywords

Parameterized complexity Deletion problems Split graphs Subexponential algorithm 

References

  1. 1.
    Abu-Khzam, F.: A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (eds.) Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, 5–12 July 2009, Proceedings, Part I. Lecture Notes in Computer Science, vol. 5555, pp. 49–58. Springer, Berlin (2009) Google Scholar
  3. 3.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996) CrossRefMATHGoogle Scholar
  4. 4.
    Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. J. Comput. Syst. Sci. 67, 789–807 (2003) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Cygan, M., Pilipczuk, M.: Split vertex deletion meets vertex cover: new fixed-parameter and exact exponential-time algorithms. Inf. Process. Lett. 113(5–6), 179–182 (2013) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and h-minor-free graphs. J. ACM 52(6), 866–893 (2005) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999) CrossRefGoogle Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006) Google Scholar
  9. 9.
    Földes, S., Hammer, P.: Split graphs. Congr. Numer. 19, 311–315 (1977) Google Scholar
  10. 10.
    Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds for parameterized complexity of cluster editing. In: Portier, N., Wilke, T. (eds.) 30th International Symposium on Theoretical Aspects of Computer Science, STACS 2013, 27 February–2 March 2013, Kiel, Germany, LIPIcs, vol. 20, pp. 32–43. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Wadern (2013) Google Scholar
  11. 11.
    Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. In: Rabani, Y. (ed.) Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19 January 2012, pp. 1737–1746. SIAM, Philadelphia (2012) CrossRefGoogle Scholar
  12. 12.
    Fujito, T.: A unified approximation algorithm for node-deletion problems. Discrete Appl. Math. 86, 213–231 (1998) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980) MATHGoogle Scholar
  14. 14.
    Guo, J.: Problem kernels for NP-complete edge deletion problems: split and related graphs. In: Proceedings of the 18th International Conference on Algorithms and Computation, ISAAC’07, pp. 915–926. Springer, Berlin, Heidelberg (2007) Google Scholar
  15. 15.
    Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1(3), 275–284 (1981) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Heggernes, P., Mancini, F.: Minimal split completions. Discrete Appl. Math. 157(12), 2659–2669 (2009) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Heggernes, P., van ’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parameterized complexity of vertex deletion into perfect graph classes. In: Owe, O., Steffen, M., Telle, J.A. (eds.) Proceedings of the Fundamentals of Computation Theory—18th International Symposium, FCT 2011, Oslo, Norway, 22–25 August 2011. Lecture Notes in Computer Science, vol. 6914, pp. 240–251. Springer, Berlin (2011). Google Scholar
  18. 18.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. CoRR abs/1203.0833 (2012) Google Scholar
  20. 20.
    Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM 41, 960–981 (1994) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorithmica 62(3–4), 807–822 (2012) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Appl. Math. 113(1), 109–128 (2001) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Tyshkevich, R.I., Chernyak, A.A.: Yet another method of enumerating unmarked combinatorial objects. Math. Notes - Ross. Akad. 48, 1239–1245 (1990) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Esha Ghosh
    • 1
  • Sudeshna Kolay
    • 1
  • Mrinal Kumar
    • 2
  • Pranabendu Misra
    • 3
  • Fahad Panolan
    • 1
  • Ashutosh Rai
    • 1
  • M. S. Ramanujan
    • 1
  1. 1.The Institute of Mathematical SciencesChennaiIndia
  2. 2.Indian Institute of Technology, MadrasChennaiIndia
  3. 3.Chennai Mathematical InstituteChennaiIndia

Personalised recommendations