, Volume 71, Issue 4, pp 904–968 | Cite as

Fully Dynamic Recognition of Proper Circular-Arc Graphs

  • Francisco J. Soulignac


We present a fully dynamic algorithm for the recognition of proper circular-arc (PCA) graphs. The allowed operations on the graph involve the insertion and removal of vertices (together with its incident edges) or edges. Edge operations cost O(logn) time, where n is the number of vertices of the graph, while vertex operations cost O(logn+d) time, where d is the degree of the modified vertex. We also show incremental and decremental algorithms that work in O(1) time per inserted or removed edge. As part of our algorithm, fully dynamic connectivity and co-connectivity algorithms that work in O(logn) time per operation are obtained. Also, an O(Δ) time algorithm for determining if a PCA representation corresponds to a co-bipartite graph is provided, where Δ is the maximum among the degrees of the vertices. When the graph is co-bipartite, a co-bipartition of each of its co-components is obtained within the same amount of time. As an application, we show how to find a minimal forbidden induced subgraph of a static graph in O(n+m) time.


Dynamic recognition Proper circular-arc graphs Round graphs Co-connectivity Minimal forbidden induced subgraphs 



The author is grateful to Min Chih Lin for pointing out that the co-components can be found in O(Δ) time, and to Jayme Szwarcfiter for asking whether the HSS algorithms can be generalized so as to recognize PHCA or PCA graphs. These were key observations for beginning the research that gave life to this article.


  1. 1.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, third edn. MIT Press, Cambridge (2009) zbMATHGoogle Scholar
  2. 2.
    Corneil, D.G.: A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs. Discrete Appl. Math. 138(3), 371–379 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Inf. Process. Lett. 55(2), 99–104 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Crespelle, C.: Fully dynamic representations of interval graphs. In: Graph-Theoretic Concepts in Computer Science. Lecture Notes in Comput. Sci., vol. 5911, pp. 77–87. Springer, Berlin (2010) CrossRefGoogle Scholar
  5. 5.
    Crespelle, C., Paul, C.: Fully dynamic recognition algorithm and certificate for directed cographs. Discrete Appl. Math. 154(12), 1722–1741 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Crespelle, C., Paul, C.: Fully dynamic algorithm for recognition and modular decomposition of permutation graphs. Algorithmica 58(2), 405–432 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Algorithms and Theory of Computation Handbook, pp. 1–25. CRC Press, Boca Raton (1999) Google Scholar
  9. 9.
    Herrera de Figueiredo, C.M., Meidanis, J., Picinin de Mello, C.: A linear-time algorithm for proper interval graph recognition. Inf. Process. Lett. 56(3), 179–184 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Heggernes, P., Mancini, F.: Dynamically maintaining split graphs. Discrete Appl. Math. 157(9), 2057–2069 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Hell, P., Huang, J.: Certifying LexBFS recognition algorithms for proper interval graphs and proper interval bigraphs. SIAM J. Discrete Math. 18(3), 554–570 (2004/05) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Comput. 31(1), 289–305 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Huang, J.: Tournament-like oriented graphs. Ph.D. thesis, Simon Fraser University (1992). Accessed 15 February 2013
  14. 14.
    Huang, J.: On the structure of local tournaments. J. Comb. Theory, Ser. B 63(2), 200–221 (1995) CrossRefzbMATHGoogle Scholar
  15. 15.
    Ibarra, L.: Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Algorithms 4(4), 40 (2008) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ibarra, L.: A fully dynamic graph algorithm for recognizing proper interval graphs. In: WALCOM—Algorithms and Computation. Lecture Notes in Comput. Sci., vol. 5431, pp. 190–201. Springer, Berlin (2009) Google Scholar
  17. 17.
    Ibarra, L.: A fully dynamic graph algorithm for recognizing interval graphs. Algorithmica 58(3), 637–678 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Kaplan, H., Nussbaum, Y.: Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs. Discrete Appl. Math. 157(15), 3216–3230 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fundam. Math. 51, 45–64 (1962/1963) MathSciNetGoogle Scholar
  20. 20.
    Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: A simple linear time algorithm for the isomorphism problem on proper circular-arc graphs. In: Algorithm Theory—SWAT 2008. Lecture Notes in Comput. Sci., vol. 5124, pp. 355–366. Springer, Berlin (2008) CrossRefGoogle Scholar
  21. 21.
    Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Normal Helly circular-arc graphs and its subclasses. Discrete Appl. Math. 161(7–8), 1037–1059 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Lin, M.C., Szwarcfiter, J.L.: Characterizations and recognition of circular-arc graphs and subclasses: a survey. Discrete Math. 309(18), 5618–5635 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Comput. Sci. Rev. 5(2), 119–161 (2011) CrossRefzbMATHGoogle Scholar
  24. 24.
    Nikolopoulos, S.D., Palios, L., Papadopoulos, C.: A fully dynamic algorithm for the recognition of P 4-sparse graphs. Theor. Comput. Sci. 439, 41–57 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Roberts, F.S.: Indifference graphs. In: Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968), pp. 139–146. Academic Press, New York (1969) Google Scholar
  26. 26.
    Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and recognition of cographs. Discrete Appl. Math. 136(2–3), 329–340 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Soulignac, F.J.: On proper and Helly circular-arc graphs. Ph.D. thesis, Universidad de Buenos Aires (2010). Accessed 15 February 2013
  28. 28.
    Tarjan, R.E.: Data Structures and Network Algorithms. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 44. SIAM, Philadelphia (1983) CrossRefGoogle Scholar
  29. 29.
    Tedder, M., Corneil, D.: An optimal, edges-only fully dynamic algorithm for distance-hereditary graphs. In: STACS 2007. Lecture Notes in Comput. Sci., vol. 4393, pp. 344–355. Springer, Berlin (2007) CrossRefGoogle Scholar
  30. 30.
    Tucker, A.: Structure theorems for some circular-arc graphs. Discrete Math. 7, 167–195 (1974) CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Yrysgul, T.: A fully dynamic algorithm for recognizing and representing chordal graphs. In: Virbitskaite, I., Voronkov, A. (eds.) Perspectives of Systems Informatics. Lecture Notes in Comput. Sci., vol. 4378, pp. 481–486. Springer, Berlin (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.CONICETBuenos AiresArgentina
  2. 2.Departamento de Computación, FCENUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations