Advertisement

Algorithmica

, Volume 71, Issue 2, pp 233–257 | Cite as

Monotone Drawings of Graphs with Fixed Embedding

  • Patrizio Angelini
  • Walter Didimo
  • Stephen Kobourov
  • Tamara Mchedlidze
  • Vincenzo Roselli
  • Antonios Symvonis
  • Stephen Wismath
Article

Abstract

A drawing of a graph is a monotone drawing if for every pair of vertices u and v there is a path drawn from u to v that is monotone in some direction. In this paper we investigate planar monotone drawings in the fixed embedding setting, i.e., a planar embedding of the graph is given as part of the input that must be preserved by the drawing algorithm. In this setting we prove that every planar graph on n vertices admits a planar monotone drawing with at most two bends per edge and with at most 4n−10 bends in total; such a drawing can be computed in linear time and requires polynomial area. We also show that two bends per edge are sometimes necessary on a linear number of edges of the graph. Furthermore, we investigate subclasses of planar graphs that can be realized as embedding-preserving monotone drawings with straight-line edges. In fact, we prove that biconnected embedded planar graphs and outerplane graphs always admit such drawings, and describe linear-time drawing algorithms for these two graph classes.

Keywords

Monotone drawings Fixed embedding Planar graph drawing Polynomial area Curve complexity 

Notes

Acknowledgements

We thank the anonymous reviewers for their valuable comments.

References

  1. 1.
    Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations. J. Graph Algorithms Appl. 14(1), 19–51 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Angelini, P., Colasante, E., Battista, G.D., Frati, F., Patrignani, M.: Monotone drawings of graphs. J. Graph Algorithms Appl. 16(1), 5–35 (2012). Special Issue on Selected Papers from GD ’10 CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Arkin, E.M., Connelly, R., Mitchell, J.S.B.: On monotone paths among obstacles with applications to planning assemblies. In: Symposium on Computational Geometry, pp. 334–343 (1989) Google Scholar
  4. 4.
    Battista, G.D.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Battista, G.D.: On-line planarity testing. SIAM J. Comput. 25, 956–997 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Brocot, A.: Calcul des rouages par approximation, nouvelle methode. Rev. Chronom. 6, 186–194 (1860) Google Scholar
  7. 7.
    Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 485–524 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chiba, N., Nishizeki, T.: Planar Graphs: Theory and Algorithms. Annals of Discrete Mathematics, vol. 32. North-Holland, Amsterdam (1988) zbMATHGoogle Scholar
  9. 9.
    Chiba, N., Onoguchi, K., Nishizeki, T.: Drawing plane graphs nicely. Acta Inform. 22, 187–201 (1985) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999) zbMATHGoogle Scholar
  11. 11.
    Garg, A., Tamassia, R.: Upward planarity testing. Order 12(2), 109–133 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gutwenger, C., Mutzel, P.: A linear time implementation of spqr-trees. In: Marks, J. (ed.) Graph Drawing. Lecture Notes in Computer Science, vol. 1984, pp. 77–90. Springer, Berlin (2001) CrossRefGoogle Scholar
  13. 13.
    Huang, W., Eades, P., Hong, S.-H.: A graph reading behavior: geodesic-path tendency. In: PacificVis, pp. 137–144 (2009) Google Scholar
  14. 14.
    Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. Discrete Comput. Geom. 44(3), 686–705 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci. 344(1), 3–14 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Stern, M.A.: Ueber eine zahlentheoretische Funktion. J. Reine Angew. Math. 55, 193–220 (1858) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Walter Didimo
    • 2
  • Stephen Kobourov
    • 3
  • Tamara Mchedlidze
    • 4
  • Vincenzo Roselli
    • 1
  • Antonios Symvonis
    • 5
  • Stephen Wismath
    • 6
  1. 1.Università Roma TreRomaItaly
  2. 2.Università degli Studi di PerugiaPerugiaItaly
  3. 3.University of ArizonaTucsonUSA
  4. 4.Faculty of InformaticsKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  5. 5.National Technical University of AthensAthensGreece
  6. 6.University of LethbridgeLethbridgeCanada

Personalised recommendations