, Volume 71, Issue 1, pp 120–138 | Cite as

Colored Hypergraph Isomorphism is Fixed Parameter Tractable

  • V. Arvind
  • Bireswar Das
  • Johannes KöblerEmail author
  • Seinosuke Toda


We describe a fixed parameter tractable (fpt) algorithm for Colored Hypergraph Isomorphism, denoted CHI, which has running time (2 b N) O(1), where the parameter b is the maximum size of the color classes of the given hypergraphs and N is the input size. We also describe an fpt algorithm for a parameterized coset intersection problem that is used as a subroutine in our algorithm for CHI.


Fixed parameter tractability Fpt algorithms Graph isomorphism Computational complexity 



We thank the referees for their helpful comments and suggestions.


  1. 1.
    Arvind, V., Das, B., Köbler, J., Toda, S.: Colored hypergraph isomorphism is fixed parameter tractable. In: Proceedings of the 30th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS). Leibniz International Proceedings in Informatics, vol. 8, pp. 327–337. Leibniz-Zentrum für Informatik, Dagstuhl (2010) Google Scholar
  2. 2.
    Arvind, V., Köbler, J.: On hypergraph and graph isomorphism with bounded color classes. In: Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science (STACS). Lecture Notes in Computer Science, vol. 3884, pp. 384–395. Springer, Berlin (2006) Google Scholar
  3. 3.
    Arvind, V., Köbler, J.: Canonizing hypergraphs under Abelian group action. In: Proceedings of the 17th Annual International Computing and Combinatorics Conference (COCOON). Lecture Notes in Computer Science, vol. 6842, pp. 444–455. Springer, Berlin (2011) Google Scholar
  4. 4.
    Babai, L.: Monte-carlo algorithms in graph isomorphism testing. Technical report 79-10, Université de Montréal (1979) Google Scholar
  5. 5.
    Babai, L.: Moderately exponential bounds for graph isomorphism. In: Proceedings of the 3rd International Symposium Fundamentals of Computation Theory (FCT). Lecture Notes in Computer Science, vol. 117, pp. 34–50. Springer, Berlin (1981) CrossRefGoogle Scholar
  6. 6.
    Babai, L., Codenotti, P.: Isomorhism of hypergraphs of low rank in moderately exponential time. In: Proceedings of the 49th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 667–676 (2008) Google Scholar
  7. 7.
    Babai, L., Kantor, W.M., Luks, E.M.: Computational complexity and the classification of finite simple groups. In: Proceedings of the 24th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 162–171 (1983) Google Scholar
  8. 8.
    Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC), pp. 171–183 (1983) Google Scholar
  9. 9.
    Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. J. Algor. 11(4), 631–643 (1990) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: Basic results. SIAM J. Comput. 24(4), 873–921 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999) CrossRefGoogle Scholar
  12. 12.
    Evdokimov, S., Ponomarenko, I.: Isomorphism of colored graphs with slowly increasing multiplicity of Jordan blocks. Combinatorica 19(3), 321–333 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006) Google Scholar
  14. 14.
    Furst, M., Hopcroft, J.E., Luks, E.M.: Polynomial-time algorithms for permutation groups. Technical report, Cornell University (1980) Google Scholar
  15. 15.
    Isaacs, I.M.: Finite Group Theory. American Mathematical Society, Philadelphia (2008) zbMATHGoogle Scholar
  16. 16.
    Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph isomorphism. J. Comput. Syst. Sci. 66(3), 549–566 (2003) CrossRefzbMATHGoogle Scholar
  17. 17.
    Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set number. In: Kaplan, H. (ed.) Proceedings of the 12th Scandinavian Workshop on Algorithm Theory (SWAT). Lecture Notes in Computer Science, vol. 6139, pp. 81–92. Springer, Berlin (2010) Google Scholar
  18. 18.
    Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complexity. Progress in Theoretical Computer Science. Birkhäuser, Boston (1993) CrossRefzbMATHGoogle Scholar
  19. 19.
    Köbler, J.: On graph isomorphism for restricted graph classes. In: Logical Approaches to Computational Barriers. Lecture Notes in Computer Science, vol. 3988, pp. 241–256. Springer, Berlin (2006) CrossRefGoogle Scholar
  20. 20.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25(1), 42–65 (1982) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Luks, E.M.: Permutation groups and polynomial-time computation. In: Finkelstein, L., Kantor, W.M. (eds.) Groups and Computation. Discrete Mathematics and Theoretical Computer Science, vol. 11, pp. 139–175. American Mathematical Society, Philadelphia (1993) Google Scholar
  22. 22.
    Luks, E.M.: Hypergraph isomorphism and structural equivalence of boolean functions. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC), pp. 652–658 (1999) Google Scholar
  23. 23.
    Miller, G.L.: Isomorphism testing for graphs of bounded genus. In: Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC), pp. 225–235 (1980) Google Scholar
  24. 24.
    Miller, G.L.: Isomorphism of k-contractible graphs. Inf. Con. 56(1–2), 1–20 (1983) CrossRefzbMATHGoogle Scholar
  25. 25.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, London (2006) CrossRefzbMATHGoogle Scholar
  26. 26.
    Seress, Á.: Permutation Group Algorithms. Cambridge University Press, Cambridge (2003) CrossRefzbMATHGoogle Scholar
  27. 27.
    Sims, C.C.: Computational methods in the study of permutation groups. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 169–183. Pergamon, Elmsford (1970) CrossRefGoogle Scholar
  28. 28.
    Sims, C.C.: Some group theoretic algorithms. In: Dold, A., Eckmann, B. (eds.) Topics in Algebra. Lecture Notes in Mathematics, vol. 697, pp. 108–124. Springer, Berlin (1978) CrossRefGoogle Scholar
  29. 29.
    Toda, S.: Computing automorphism groups of chordal graphs whose simplicial components are of small size. IEICE Trans. Inform. Syst. 89-D(8), 2388–2401 (2006) CrossRefGoogle Scholar
  30. 30.
    Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for graphs of bounded distance width. Algorithmica 24(2), 105–127 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Zemlyachenko, V.N., Kornienko, N.M., Tyshkevich, R.I.: Graph isomorphism problem. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta 118, 83–158 (1982) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. Arvind
    • 1
  • Bireswar Das
    • 2
  • Johannes Köbler
    • 3
    Email author
  • Seinosuke Toda
    • 4
  1. 1.The Institute of Mathematical SciencesChennaiIndia
  2. 2.Indian Institute of Technology GandhinagarAhmedabadIndia
  3. 3.Institut für InformatikHumboldt Universität zu BerlinBerlinGermany
  4. 4.Nihon UniversityTokyoJapan

Personalised recommendations