, Volume 68, Issue 1, pp 152–189 | Cite as

Evolutionary Algorithms for Quantum Computers

  • Daniel Johannsen
  • Piyush P. Kurur
  • Johannes Lengler


In this article, we formulate and study quantum analogues of randomized search heuristics, which make use of Grover search (in Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New York, 1996) to accelerate the search for improved offsprings. We then specialize the above formulation to two specific search heuristics: Random Local Search and the (1+1) Evolutionary Algorithm. We call the resulting quantum versions of these search heuristics Quantum Local Search and the (1+1) Quantum Evolutionary Algorithm.

We conduct a rigorous runtime analysis of these quantum search heuristics in the computation model of quantum algorithms, which, besides classical computation steps, also permits those unique to quantum computing devices. To this end, we study the six elementary pseudo-Boolean optimization problems OneMax, LeadingOnes, Discrepancy, Needle, Jump, and TinyTrap.

It turns out that the advantage of the respective quantum search heuristic over its classical counterpart varies with the problem structure and ranges from no speedup at all for the problem Discrepancy to exponential speedup for the problem TinyTrap. We show that these runtime behaviors are closely linked to the probabilities of performing successful mutations in the classical algorithms.


Theory Evolutionary computation Quantum algorithm Runtime analysis 


  1. 1.
    Aaronson, S.: Lower bounds for local search by quantum arguments. SIAM J. Comput. 35(4), 804–824 (2006) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci. 64(4), 750–767 (2002) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Ambainis, A.: Quantum random walks—new method for designing quantum algorithms. In: SOFSEM ’08: Proceedings of the 34th Conference on Current Trends in Theory and Practice of Computer Science. LNCS, vol. 4910, pp. 1–4. Springer, Berlin (2008) CrossRefGoogle Scholar
  4. 4.
    Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. Series on Theoretical Computer Science, vol. 1. World Scientific, Singapore (2011) MATHGoogle Scholar
  5. 5.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Berzina, A., Dubrovsky, A., Freivalds, R., Lace, L., Scegulnaja, O.: Quantum query complexity for some graph problems. In: SOFSEM ’04: Proceedings of the 30th Conference on Current Trends in Theory and Practice of Computer Science. LNCS, vol. 2932, pp. 140–150. Springer, Berlin (2004) CrossRefGoogle Scholar
  8. 8.
    Beyer, H.-G., Schwefel, H.-P., Wegener, I.: How to analyse evolutionary algorithms. Theor. Comput. Sci. 287(1), 101–130 (2002) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46(4–5), 493–505 (1998) CrossRefGoogle Scholar
  10. 10.
    Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: ICALP ’98: Proceedings of the 25th International Colloquium on Automata, Languages and Programming. LNCS, vol. 1443, pp. 820–831. Springer, Berlin (1998) CrossRefGoogle Scholar
  11. 11.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum (1996). arXiv:quant-ph/9607014v2
  13. 13.
    Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of some graph problems. SIAM J. Comput. 35(6), 1310–1328 (2006) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evol. Comput. 7(2), 173–203 (1999) CrossRefGoogle Scholar
  15. 15.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC ’96: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New York (1996) CrossRefGoogle Scholar
  16. 16.
    Han, K.-H., Kim, J.-H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 6(6), 580–593 (2002) CrossRefGoogle Scholar
  17. 17.
    He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Nat. Comput. 3(1), 21–35 (2004) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Johannsen, D., Kurur, P.P., Lengler, J.: Can quantum search accelerate evolutionary algorithms? In: GECCO ’10: Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference, pp. 1433–1440. ACM, New York (2010) CrossRefGoogle Scholar
  19. 19.
    Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable codes via a quantum argument. J. Comput. Syst. Sci. 69(3), 395–420 (2004) CrossRefMATHGoogle Scholar
  20. 20.
    Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Magniez, F., Nayak, A., Richter, P.C., Santha, M.: On the hitting times of quantum versus random walks. Algorithmica 63(1–2), 91–116 (2012) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  23. 23.
    Santha, M.: Quantum walk based search algorithms. In: TAMC ’08: Proceedings of the 5th Annual Conference on Theory and Applications of Models of Computation. LNCS, vol. 4978, pp. 31–46. Springer, Berlin (2008) Google Scholar
  24. 24.
    Spector, L., Barnum, H., Bernstein, H.J., Swamy, N.: Finding a better-than-classical quantum AND/OR algorithm using genetic programming. In: CEC ’99: Proceedings of the 1999 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2239–2246. IEEE, New York (1999) Google Scholar
  25. 25.
    Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: FOCS ’04: Proceedings of the 45th Annual IEEE Syposium on Foundations of Computer Science, pp. 32–41. IEEE, New York (2004) CrossRefGoogle Scholar
  26. 26.
    Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. Lett. 60(4), 2746–2751 (1999) Google Scholar
  27. 27.
    Zhang, S.: New quantum algorithms and quantum lower bounds. PhD thesis (2006) Google Scholar
  28. 28.
    Zhang, S.: New upper and lower bounds for randomized and quantum local search. In: STOC ’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 634–643. ACM, New York (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Johannsen
    • 1
  • Piyush P. Kurur
    • 2
  • Johannes Lengler
    • 3
  1. 1.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Dept. of Comp. Sci. and Engg.Indian Institute of Technology KanpurKanpurIndia
  3. 3.Department of Theoretical Computer ScienceEidgenössische Technische Hochschule ETHZürichSwitzerland

Personalised recommendations