, Volume 69, Issue 3, pp 619–640 | Cite as

Improving the Price of Anarchy for Selfish Routing via Coordination Mechanisms

  • Giorgos Christodoulou
  • Kurt Mehlhorn
  • Evangelia Pyrga


We reconsider the well-studied Selfish Routing game with affine latency functions. The Price of Anarchy for this class of games takes maximum value 4/3; this maximum is attained already for a simple network of two parallel links, known as Pigou’s network. We improve upon the value 4/3 by means of Coordination Mechanisms.

We increase the latency functions of the edges in the network, i.e., if e (x) is the latency function of an edge e, we replace it by \(\hat{\ell}_{e}(x)\) with \(\ell_{e}(x) \le \hat{\ell}_{e}(x)\) for all x. Then an adversary fixes a demand rate as input. The engineered Price of Anarchy of the mechanism is defined as the worst-case ratio of the Nash social cost in the modified network over the optimal social cost in the original network. Formally, if \(\hat{C}_{N} (r)\) denotes the cost of the worst Nash flow in the modified network for rate r and C opt (r) denotes the cost of the optimal flow in the original network for the same rate then
$$\mathit{ePoA} = \max_{r \ge 0} \frac{\hat{C}_N(r)}{C_{\mathit{opt}}(r)}. $$

We first exhibit a simple coordination mechanism that achieves for any network of parallel links an engineered Price of Anarchy strictly less than 4/3. For the case of two parallel links our basic mechanism gives 5/4=1.25. Then, for the case of two parallel links, we describe an optimal mechanism; its engineered Price of Anarchy lies between 1.191 and 1.192.


Algorithmic game theory Selfish routing Price of Anarchy Coordination mechanisms 



We would like to thank Elias Koutsoupias, Spyros Angelopoulos and Nicolás Stier Moses for many fruitful discussions.


  1. 1.
    Angel, E., Bampis, E., Pascual, F.: Truthful algorithms for scheduling selfish tasks on parallel machines. Theor. Comput. Sci. 369(1–3), 157–168 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Angel, E., Bampis, E., Pascual, F., Tchetgnia, A.-A.: On truthfulness and approximation for scheduling selfish tasks. J. Sched. 12(5), 437–445 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Azar, Y., Jain, K., Mirrokni, V.S.: (Almost) optimal coordination mechanisms for unrelated machine scheduling. In: SODA, pp. 323–332 (2008) Google Scholar
  4. 4.
    Bernstein, D., Smith, T.E.: Equilibria for networks with lower semicontinuous costs: with an application to congestion pricing. Transp. Sci. 28(3), 221–235 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bonifaci, V., Salek, M., Schäfer, G.: On the efficiency of restricted tolls in network routing games. In: SAGT, pp. 302–313 (2011) Google Scholar
  6. 6.
    Caragiannis, I.: Efficient coordination mechanisms for unrelated machine scheduling. In: SODA, pp. 815–824 (2009) Google Scholar
  7. 7.
    Christodoulou, G., Gourvès, L., Pascual, F.: Scheduling selfish tasks: about the performance of truthful algorithms. In: COCOON, pp. 187–197 (2007) Google Scholar
  8. 8.
    Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. Theor. Comput. Sci. 410(36), 3327–3336 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Christodoulou, G., Mehlhorn, K., Pyrga, E.: Improving the price of anarchy for selfish routing via coordination mechanisms. In: ESA, pp. 119–130 (2011) Google Scholar
  10. 10.
    Cole, R., Dodis, Y., Roughgarden, T.: Pricing network edges for heterogeneous selfish users. In: STOC, pp. 521–530 (2003) Google Scholar
  11. 11.
    Cole, R., Dodis, Y., Roughgarden, T.: How much can taxes help selfish routing? J. Comput. Syst. Sci. 72(3), 444–467 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V., Olver, N.: Inner product spaces for MinSum coordination mechanisms. In: STOC (2011) Google Scholar
  13. 13.
    Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: A geometric approach to the price of anarchy in nonatomic congestion games. Games Econ. Behav. 64, 457–469 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Dafermos, S.: An extended traffic assignment model with applications to two-way traffic. Transp. Sci. 5, 366–389 (1971) CrossRefGoogle Scholar
  15. 15.
    Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general network. J. Res. Natl. Bur. Stand. B, Math. Sci. 73B(2), 91–118 (1969) CrossRefMathSciNetGoogle Scholar
  16. 16.
    de Palma, A., Nesterov, Y.: Optimization formulations and static equilibrium in congested transportation networks. CORE Discussion Paper 9861, Université Catholique de Louvain, Louvain-la-Neuve, 12–17, 1998 Google Scholar
  17. 17.
    Fleischer, L.: Linear tolls suffice: new bounds and algorithms for tolls in single source networks. Theor. Comput. Sci. 348(2–3), 217–225 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in multicommodity networks and generalized congestion games. In: FOCS, pp. 277–285 (2004) Google Scholar
  19. 19.
    Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.: Coordination mechanisms for selfish scheduling. In: WINE, pp. 55–69 (2005) Google Scholar
  20. 20.
    Karakostas, G., Kolliopoulos, S.G.: Edge pricing of multicommodity networks for heterogeneous selfish users. In: FOCS, pp. 268–276 (2004) Google Scholar
  21. 21.
    Karakostas, G., Kolliopoulos, S.G.: The efficiency of optimal taxes. In: CAAN, pp. 3–12 (2004) Google Scholar
  22. 22.
    Kollias, K.: Non-preemptive coordination mechanisms for identical machine scheduling games. In: SIROCCO, pp. 197–208 (2008) Google Scholar
  23. 23.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2), 65–69 (2009) CrossRefGoogle Scholar
  24. 24.
    Marcotte, P., Patriksson, M.: Traffic equilibrium. In: Transportation. Handbooks in Operations Research and Management Science, vol. 14, pp. 623–713. North-Holland, Amsterdam (2007). Chap. 10 CrossRefGoogle Scholar
  25. 25.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007) CrossRefzbMATHGoogle Scholar
  26. 26.
    Patriksson, M.: The Traffic Assignment Problem: Models and Methods. V.S.P. Intl Science, Leiden (1994) Google Scholar
  27. 27.
    Roughgarden, T.: Designing networks for selfish users is hard. In: FOCS (2001) Google Scholar
  28. 28.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49, 236–259 (2002) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings of the Institute of Civil Engineers, Part II, vol. 1, pp. 325–378 (1952) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Giorgos Christodoulou
    • 1
  • Kurt Mehlhorn
    • 2
  • Evangelia Pyrga
    • 3
  1. 1.University of LiverpoolLiverpoolUK
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany
  3. 3.Technische Universität MünchenMunichGermany

Personalised recommendations