Advertisement

Algorithmica

, Volume 69, Issue 3, pp 501–521 | Cite as

Detecting Fixed Patterns in Chordal Graphs in Polynomial Time

  • Rémy Belmonte
  • Petr A. Golovach
  • Pinar Heggernes
  • Pim van ’t Hof
  • Marcin Kamiński
  • Daniël PaulusmaEmail author
Article

Abstract

The Contractibility problem takes as input two graphs G and H, and the task is to decide whether H can be obtained from G by a sequence of edge contractions. The Induced Minor and Induced Topological Minor problems are similar, but the first allows both edge contractions and vertex deletions, whereas the latter allows only vertex deletions and vertex dissolutions. All three problems are NP-complete, even for certain fixed graphs H. We show that these problems can be solved in polynomial time for every fixed H when the input graph G is chordal. Our results can be considered tight, since these problems are known to be W[1]-hard on chordal graphs when parameterized by the size of H. To solve Contractibility and Induced Minor, we define and use a generalization of the classic Disjoint Paths problem, where we require the vertices of each of the k paths to be chosen from a specified set. We prove that this variant is NP-complete even when k=2, but that it is polynomial-time solvable on chordal graphs for every fixed k. Our algorithm for Induced Topological Minor is based on another generalization of Disjoint Paths called Induced Disjoint Paths, where the vertices from different paths may no longer be adjacent. We show that this problem, which is known to be NP-complete when k=2, can be solved in polynomial time on chordal graphs even when k is part of the input. Our results fit into the general framework of graph containment problems, where the aim is to decide whether a graph can be modified into another graph by a sequence of specified graph operations. Allowing combinations of the four well-known operations edge deletion, edge contraction, vertex deletion, and vertex dissolution results in the following ten containment relations: (induced) minor, (induced) topological minor, (induced) subgraph, (induced) spanning subgraph, dissolution, and contraction. Our results, combined with existing results, settle the complexity of each of the ten corresponding containment problems on chordal graphs.

Keywords

Maximal Clique Interval Graph Input Graph Disjoint Path Tree Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Belmonte, R., Golovach, P.A., Heggernes, P., van ’t Hof, P., Kamiński, M., Paulusma, D.: Finding contractions and induced minors in chordal graphs via disjoint paths. In: Proceedings of ISAAC 2011. LNCS, vol. 7074, pp. 110–119. Springer, Berlin (2011) Google Scholar
  2. 2.
    Belmonte, R., Heggernes, P., van ’t Hof, P.: Edge contractions in subclasses of chordal graphs. In: Proceedings of TAMC 2011. LNCS, vol. 6648, pp. 528–539. Springer, Berlin (2011) Google Scholar
  3. 3.
    Bienstock, D.: On the complexity of testing for odd holes and induced odd paths. Discrete Math. 90, 85–92 (1991). See also Corrigendum. Discrete Math. 102, 109 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Blair, J.R.S., Peyton, B.W.: An introduction to chordal graphs and clique trees. In: Graph Theory and Sparse Matrix Computations. IMA Volumes in Mathematics and Its Applications, vol. 56, pp. 1–29. Springer, Berlin (1993) CrossRefGoogle Scholar
  5. 5.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadelphia (1999) CrossRefzbMATHGoogle Scholar
  7. 7.
    Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. J. Graph Theory 11, 71–79 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85, 12–75 (1990) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dirac, G.A.: On rigid circuit graphs. Abh. Math. Semin. Univ. Hamb. 25, 71–76 (1961) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Theor. Comput. Sci. 141, 109–131 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fiala, J., Kamiński, M., Lidický, B., Paulusma, D.: The k-in-a-path problem for claw-free graphs. Algorithmica 62, 499–519 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Fiala, J., Kamiński, M., Paulusma, D.: A note on contracting claw-free graphs. Manuscript (2011) Google Scholar
  13. 13.
    Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and related problems. Algorithmica 13, 266–282 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006) Google Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979) zbMATHGoogle Scholar
  16. 16.
    Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory, Ser. B 16, 47–56 (1974) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    George, A., Liu, J.W.: Computer Solutions of Large Sparse Positive Definite Systems. Prentice Hall, New York (1981) Google Scholar
  18. 18.
    Golovach, P.A., Kamiński, M., Paulusma, D.: Contracting a chordal graph to a split graph or a tree. In: Proceedings of MFCS 2011. LNCS, vol. 6907, pp. 339–350. Springer, Berlin (2011) Google Scholar
  19. 19.
    Golovach, P.A., Kamiński, M., Paulusma, D., Thilikos, D.M.: Containment relations in split graphs. Discrete Appl. Math. 160, 155–163 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004) zbMATHGoogle Scholar
  21. 21.
    Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: Proceedings of STOC 2011, pp. 479–488 (2011) Google Scholar
  22. 22.
    van ’t Hof, P., Kamiński, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On graph contractions and induced minors. Discrete Appl. Math. 160, 799–809 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    van ’t Hof, P., Paulusma, D., Woeginger, G.J.: Partitioning graphs in connected parts. Theor. Comput. Sci. 410, 4834–4843 (2009) CrossRefzbMATHGoogle Scholar
  24. 24.
    Kamiński, M., Thilikos, D.M.: Contraction checking in graphs on surfaces. In: Proceedings of STACS, 2012, to appear Google Scholar
  25. 25.
    Kloks, T.: Treewidth, Computations and Approximations. LNCS, vol. 842. Springer, Berlin (1994) zbMATHGoogle Scholar
  26. 26.
    Lévêque, B., Lin, D.Y., Maffray, F., Trotignon, N.: Detecting induced subgraphs. Discrete Appl. Math. 157, 3540–3551 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Levin, A., Paulusma, D., Woeginger, G.J.: The computational complexity of graph contractions I: polynomially solvable and NP-complete cases. Networks 51, 178–189 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Levin, A., Paulusma, D., Woeginger, G.J.: The computational complexity of graph contractions II: two tough polynomially solvable cases. Networks 52, 32–56 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms for partial k-trees. Discrete Math. 108, 343–364 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Natarajan, S., Sprague, A.P.: Disjoint paths in circular arc graphs. Nord. J. Comput. 3, 256–270 (1996) MathSciNetGoogle Scholar
  31. 31.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006) CrossRefzbMATHGoogle Scholar
  32. 32.
    de Ridder, H.N., et al.: Information System on Graph Classes and their Inclusions (ISGCI). http://www.graphclasses.org, 2001–2012
  33. 33.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63, 65–110 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2003) zbMATHGoogle Scholar
  35. 35.
    Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 66–579 (1984) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rémy Belmonte
    • 1
  • Petr A. Golovach
    • 2
  • Pinar Heggernes
    • 1
  • Pim van ’t Hof
    • 1
  • Marcin Kamiński
    • 3
  • Daniël Paulusma
    • 2
    Email author
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.School of Engineering and Computing SciencesDurham UniversityDurhamUK
  3. 3.Département d’InformatiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations