, Volume 68, Issue 4, pp 805–834 | Cite as

Computing the Map of Geometric Minimal Cuts

  • Jinhui Xu
  • Lei Xu
  • Evanthia Papadopoulou


In this paper we consider the following problem of computing a map of geometric minimal cuts (called MGMC problem): Given a graph G=(V,E) and a planar rectilinear embedding of a subgraph H=(V H ,E H ) of G, compute the map of geometric minimal cuts induced by axis-aligned rectangles in the embedding plane. The MGMC problem is motivated by the critical area extraction problem in VLSI designs and finds applications in several other fields. In this paper, we propose a novel approach based on a mix of geometric and graph algorithm techniques for the MGMC problem. Our approach first shows that unlike the classic min-cut problem on graphs, the number of all rectilinear geometric minimal cuts is bounded by a low polynomial, O(n 3). Our algorithm for identifying geometric minimal cuts runs in O(n 3logn(loglogn)3) expected time which can be reduced to O(nlogn(loglogn)3) when the maximum size of the cut is bounded by a constant, where n=|V H |. Once geometric minimal cuts are identified we show that the problem can be reduced to computing the L Hausdorff Voronoi diagram of axis aligned rectangles. We present the first output-sensitive algorithm to compute this diagram which runs in O((N+K)log2 NloglogN) time and O(Nlog2 N) space, where N is the number of rectangles and K is the complexity of the Hausdorff Voronoi diagram. Our approach settles several open problems regarding the MGMC problem.


Geometric minimal cut Hausdorff Voronoi diagram Output sensitive algorithm Plane sweep algorithm Computational geometry 



The authors would like to thank three anonymous referees for their thoughtful comments and suggestions which significantly improve the presentation of the paper.


  1. 1.
    Abellanas, M., Hernandez, G., Klein, R., Neumann-Lara, V., Urrutia, J.: A combinatorial property of convex sets. Discrete Comput. Geom. 17, 307–318 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Dehne, F., Klein, R.: The Big Sweep: on the power of the wavefront approach to Voronoi diagrams. Algorithmica 17, 19–32 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Dehne, F., Maheshwari, A., Taylor, R.: A coarse grained parallel algorithm for Hausdorff Voronoi diagrams. In: Proc. 2006 International Conference on Parallel Processing, pp. 497–504 (2006) Google Scholar
  4. 4.
    Driscoll, J.R., Sarnak, N., Sleator, D., Tarjan, R.: Making data structures persistent. In: Proceedings of the 18th annual ACM symposium on Theory of computing, pp. 109–121 (1986) Google Scholar
  5. 5.
    Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions: algorithms and applications. Discrete Comput. Geom. 4, 311–336 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification—a technique for speeding up dynamic graph algorithms. J. ACM 44(5), 669–696 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Ferris-Prabhu, A.: Defect size variations and their effect on the critical area of VLSI devices. IEEE J. Solid-State Circuits 20(4), 878–880 (1985) CrossRefGoogle Scholar
  8. 8.
    Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput. 14(4), 781–798 (1985) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Henzinger, M.R., King, V.: Randomized dynamic graph algorithms with polylogarithmic time per operation. In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pp. 519–527 (1995) Google Scholar
  11. 11.
    Klein, R.: Concrete and Abstract Voronoi Diagrams. Lecture Notes in Computer Science, vol. 400. Springer, Berlin (1989) CrossRefzbMATHGoogle Scholar
  12. 12.
    Klein, R., Langetepe, E., Nilforoushan, Z.: Abstract Voronoi diagrams revisited. Comput. Geom. 42(9), 885–902 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagram. Comput. Geom. 3, 157–184 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Henzinger, M.R., Thorup, M.: Sampling to provide or to bound: with applications to fully dynamic graph algorithms. Random Struct. Algorithms 11, 363–379 (1997) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Holm, J., Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Mehlhorn, K., Näher, S.: Dynamic fractional cascading. Algorithmica 5, 215–241 (1990) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Nakamura, Y., ABE, S., Ohsawa, Y., Sakauchi, M.: MD-tree: a balanced hierarchical data structure for multi-dimensional data with highly efficient dynamic characteristics. IEEE Trans. Knowl. Data Eng. 5(4), 682–694 (1993) CrossRefGoogle Scholar
  18. 18.
    Papadopoulou, E.: Critical area computation for missing material defects in VLSI circuits. IEEE Trans. Comput.-Aided Des. 20(5), 583–597 (2001) CrossRefGoogle Scholar
  19. 19.
    Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica 40, 63–82 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Papadopoulou, E.: Higher order Voronoi diagrams of segments for VLSI critical area extraction. In: ISAAC’07. LNCS, vol. 4835, pp. 716–727 (2007) Google Scholar
  21. 21.
    Papadopoulou, E.: Net-Aware critical area extraction for opens in VLSI circuits via higher-order Voronoi diagrams. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(5), 704–717 (2011) CrossRefGoogle Scholar
  22. 22.
    Papadopoulou, E., Lee, D.T.: The L Voronoi diagram of segments and VLSI applications. Int. J. Comput. Geom. Appl. 11, 503–528 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Papadopoulou, E., Lee, D.T.: Critical area computation via Voronoi diagrams. IEEE Trans. Comput.-Aided Des. 18(4), 463–474 (1999) CrossRefGoogle Scholar
  24. 24.
    Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects: a divide and conquer approach. Int. J. Comput. Geom. Appl. 14(6), 421–452 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Papadopoulou, E., Xu, J.: The L Hausdorff Voronoi diagram revisited. In: IEEE-CS Proceedings of Int. Symposium on Voronoi Diagrams in Science and Engineering, ISVD 2011 (2011) Google Scholar
  26. 26.
    Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: STOC’00, pp. 343–350 (2000) Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringState University of New York at BuffaloBuffaloUSA
  2. 2.Faculty of InformaticsUniversità della Svizzera ItalianaLuganoSwitzerland

Personalised recommendations