, Volume 68, Issue 3, pp 776–804 | Cite as

Multicommodity Flow in Trees: Packing via Covering and Iterated Relaxation



We consider the max-weight integral multicommodity flow problem in trees. In this problem we are given an edge-, arc-, or vertex-capacitated tree and weighted pairs of terminals, and the objective is to find a max-weight integral flow between terminal pairs subject to the capacities. This problem is APX-hard and a 4-approximation for the edge- and arc-capacitated versions is known. Some special cases are exactly solvable in polynomial time, including when the graph is a path or a star.

We show that all three versions of this problems fit in a common framework: first, prove a counting lemma in order to use the iterated LP relaxation method; second, solve a covering problem to reduce the resulting infeasible solution back to feasibility without losing much weight. The result of the framework is a 1+O(1/μ)-approximation algorithm where μ denotes the minimum capacity, for all three versions. A complementary hardness result shows this is asymptotically best possible. For the covering analogue of multicommodity flow, we also show a 1+Θ(1/μ) approximability threshold with a similar framework.

When the tree is a spider (i.e. only one vertex has degree greater than 2), we give a polynomial-time exact algorithm and a polyhedral description of the convex hull of all feasible solutions. This holds more generally for instances we call root-or-radial.

A preliminary version of this work appeared in Könemann et al. (Proc. 6th Int. Workshop Approx. & Online Alg. (WAOA), pp. 1–14, 2008).


Multicommodity flow Approximation algorithms Iterated LP relaxation Polyhedral combinatorics 


  1. 1.
    Andrews, M., Chuzhoy, J., Guruswami, V., Khanna, S., Talwar, K., Zhang, L.: Inapproximability of edge-disjoint paths and low congestion routing on undirected graphs. Combinatorica 30, 485–520 (2010). doi:10.1007/s00493-010-2455-9 CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Anstee, R.P.: A polynomial algorithm for b-matchings: an alternative approach. Inf. Process. Lett. 24(3), 153–157 (1987). doi:10.1016/0020-0190(87)90178-5 CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bansal, N., Khandekar, R., Nagarajan, V.: Additive guarantees for degree-bounded directed network design. SIAM J. Comput. 39(4), 1413–1431 (2009). doi:10.1137/080734340. Preliminary version In: Proc. 40th Symp. Theory Comp. (STOC), pp. 769–778 (2008) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Beck, J., Fiala, T.: “Integer-making” theorems. Discrete Appl. Math. 3(1), 1–8 (1981). doi:10.1016/0166-218X(81)90022-6 MATHMathSciNetGoogle Scholar
  5. 5.
    Bonsma, P., Schulz, J., Wiese, A.: A constant factor approximation algorithm for unsplittable flow on paths. In: Proc. 52nd Symp. Found. Comp. Sci. (FOCS), pp. 47–56 (2011). doi:10.1109/FOCS.2011.10 Google Scholar
  6. 6.
    Caprara, A., Fischetti, M.: \(\{0,\frac{1}{2} \}\)-Chvátal–Gomory cuts. Math. Program. 74(3), 221–235 (1996). doi:10.1007/BF02592196 CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chakrabarty, D., Grant, E., Könemann, J.: On column-restricted and priority covering integer programs. In: Proc. 14th Conf. Int. Prog. Comb. Opt. (IPCO), pp. 355–368 (2010). doi:10.1007/978-3-642-13036-6_27 Google Scholar
  8. 8.
    Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In: Proc. 23rd Symp. Disc. Alg. (SODA), pp. 1576–1585 (2012). Google Scholar
  9. 9.
    Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree and packing integer programs. ACM Trans. Algorithms (2007). doi:10.1145/1273340.1273343. Preliminary version in Proc. 30th Int. Colloq. Automata, Lang. & Prog. (ICALP), pp. 410–425 (2003) MathSciNetGoogle Scholar
  10. 10.
    Cheriyan, J., Jordán, T., Ravi, R.: On 2-coverings and 2-packings of laminar families. In: Proc. 7th European Symp. Alg. (ESA), pp. 510–520 (1999). doi:10.1007/3-540-48481-7_44 Google Scholar
  11. 11.
    Chlebík, M., Chlebíková, J.: Complexity of approximating bounded variants of optimization problems. Theor. Comput. Sci. 354(3), 320–338 (2006). doi:10.1016/j.tcs.2005.11.029. Preliminary version in Proc. 14th Fund. Comp. Theory (FCT), pp. 27–38 (2003) CrossRefMATHGoogle Scholar
  12. 12.
    Edmonds, J., Johnson, E.: Matching: A well-solved class of integer linear programs. In: Guy, R., Hanani, H., Sauer, N., Schonheim, J. (eds.) Combinatorial Structures and Their Applications (Proc. 1969 Calgary Conf. Comb. Struct. Appl.), pp. 89–92. Gordon and Breach, New York (1970) Google Scholar
  13. 13.
    Erlebach, T.: Approximation algorithms for edge-disjoint paths and unsplittable flow. In: Bampis, E., Jansen, K., Kenyon, C. (eds.) Efficient Approximation and Online Algorithms, pp. 97–134. Springer, Berlin (2006). Chap. 4, CrossRefGoogle Scholar
  14. 14.
    Erlebach, T., Jansen, K.: Conversion of coloring algorithms into maximum weight independent set algorithms. Discrete Appl. Math. 148(1) (2005). doi:10.1016/j.dam.2004.11.007. Preliminary version in Proc. Satellite Workshops 27th ICALP, pp. 135–146 (2000) Google Scholar
  15. 15.
    Erlebach, T., Vukadinović, D.: Path problems in generalized stars, complete graphs, and brick wall graphs. Discrete Appl. Math. 154, 673–683 (2006). doi:10.1016/j.dam.2005.05.017. Preliminary version in Proc. 13th Fund. Comp. Theory (FCT), pp. 483–494 (2001) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM J. Comput. 5(4), 691–703 (1976). doi:10.1137/0205048. Preliminary version in Proc. 16th Symp. Found. Comp. Sci. (FOCS), pp. 184–193 (1975) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Gabow, H.N., Gallagher, S.: Iterated rounding algorithms for the smallest k-edge connected spanning subgraph. SIAM J. Comput. 41(1), 61–103 (2012). doi:10.1137/080732572. Preliminary version in Proc. 19th Symp. Disc. Alg. (SODA), pp. 550–559 (2008) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Gabow, H.N., Goemans, M.X., Tardos, É., Williamson, D.P.: Approximating the smallest k-edge connected spanning subgraph by LP-rounding. Networks 53(4), 345–357 (2009). doi:10.1002/net.20289. Preliminary version in Proc. 16th Symp. Disc. Alg. (SODA), pp. 562–571 (2005) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997). doi:10.1007/BF02523685. Preliminary version in Proc. 20th Int. Colloq. Automata, Lang. & Prog. (ICALP), pp. 64–75 (1993) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Goemans, M.X.: Minimum bounded degree spanning trees. In: Proc. 47th Symp. Found. Comp. Sci. (FOCS), pp. 273–282 (2006). doi:10.1109/FOCS.2006.48 Google Scholar
  21. 21.
    Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, F.B., Yannakakis, M.: Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems. J. Comput. Syst. Sci. 67(3), 473–496 (2003). Preliminary version in Proc. 31st Symp. Theory Comp. (STOC), pp. 19–28 (1999) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Hartman, I.B.-A.: Optimal k-colouring and k-nesting of intervals. In: Proc. 4th Israel Symp. Theory Comput. & Systems, pp. 207–220 (1992) CrossRefGoogle Scholar
  23. 23.
    Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001). doi:10.1007/s004930170004. Preliminary version in Proc. 39th Symp. Found. Comp. Sci. (FOCS), pp. 448–457 (1998) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Kann, V.: On the approximability of NP-complete optimization problems. PhD thesis, Royal Institute of Technology Stockholm (1992) Google Scholar
  25. 25.
    Karp, R.M., Leighton, F.T., Rivest, R.L., Thompson, C.D., Vazirani, U.V., Vazirani, V.V.: Global wire routing in two-dimensional arrays. Algorithmica 2, 113–129 (1987). doi:10.1007/BF01840353 CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Könemann, J., Parekh, O., Pritchard, D.: Max-weight integral multicommodity flow in spiders and high-capacity trees. In: Proc. 6th Int. Workshop Approx. & Online Alg. (WAOA), pp. 1–14 (2008). doi:10.1007/978-3-540-93980-1_1 Google Scholar
  27. 27.
    Lau, L., Naor, J., Salavatipour, M., Singh, M.: Survivable network design with degree or order constraints. SIAM J. Comput. 39(3), 1062–1087 (2009). doi:10.1137/070700620. Preliminary version in Proc. 39th Symp. Theory Comp. (STOC), pp. 651–660 (2007) CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Nagarajan, V., Ravi, R., Singh, M.: Simpler analysis of LP extreme points for traveling salesman and survivable network design problems. Oper. Res. Lett. 38(3), 156–160 (2010). doi:10.1016/j.orl.2010.02.005 CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Nguyen, T.: On the disjoint paths problem. Oper. Res. Lett. 35(1), 10–16 (2007). doi:10.1016/j.orl.2006.02.001 CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Parekh, O.: Iterative packing for demand and hypergraph matching. In: Proc. 15th Conf. Int. Prog. Comb. Opt. (IPCO), pp. 349–361 (2011). doi:10.1007/978-3-642-20807-2_28 Google Scholar
  31. 31.
    Peis, B., Wiese, A.: Throughput maximization for periodic packet routing on trees and grids. In: Proc. 8th WAOA (Workshop Approx. & Online Alg.), pp. 213–224 (2011). doi:10.1007/978-3-642-18318-8_19 CrossRefGoogle Scholar
  32. 32.
    Pritchard, D.: k-edge-connectivity: approximation and LP relaxation. In: Proc. 8th WAOA (Workshop Approx. & Online Alg.), pp. 225–236 (2010). doi:10.1007/978-3-642-18318-8_20 Google Scholar
  33. 33.
    Pritchard, D., Chakrabarty, D.: Approximability of sparse integer programs. Algorithmica 61(1), 75–93 (2011). doi:10.1007/s00453-010-9431-z. Preliminary version in Proc. 17th European Symp. Alg. (ESA), pp. 83–94 (2009) CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Raghavan, P., Thompson, C.: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987). doi:10.1007/BF02579324 CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003). 3-540-44389-4 Google Scholar
  36. 36.
    Shepherd, F.B., Vetta, A.: The demand-matching problem. Math. Oper. Res. 32(3), 563–578 (2007). doi:10.1287/moor.1070.0254. Preliminary version in Proc. 9th Conf. Int. Prog. Comb. Opt. (IPCO), pp. 457–474 (2002) CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to within one of optimal. In: Proc. 39th Symp. Theory Comp. (STOC), pp. 661–670 (2007). doi:10.1145/1250790.1250887 Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jochen Könemann
    • 1
  • Ojas Parekh
    • 2
  • David Pritchard
    • 3
  1. 1.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA
  3. 3.Department of Computer SciencePrinceton UniversityPrincetonUSA

Personalised recommendations