Advertisement

Algorithmica

, Volume 68, Issue 3, pp 739–757 | Cite as

Fixed-Parameter Tractability of Satisfying Beyond the Number of Variables

  • Robert Crowston
  • Gregory Gutin
  • Mark Jones
  • Venkatesh Raman
  • Saket Saurabh
  • Anders Yeo
Article

Abstract

We consider a CNF formula F as a multiset of clauses: F={c 1,…,c m }. The set of variables of F will be denoted by V(F). Let B F denote the bipartite graph with partite sets V(F) and F and with an edge between vV(F) and cF if vc or \(\bar{v} \in c\). The matching number ν(F) of F is the size of a maximum matching in B F . In our main result, we prove that the following parameterization of MaxSat (denoted by (ν(F)+k)-SAT) is fixed-parameter tractable: Given a formula F, decide whether we can satisfy at least ν(F)+k clauses in F, where k is the parameter.

A formula F is called variable-matched if ν(F)=|V(F)|. Let δ(F)=|F|−|V(F)| and δ (F)=max F′⊆F δ(F′). Our main result implies fixed-parameter tractability of MaxSat parameterized by δ(F) for variable-matched formulas F; this complements related results of Kullmann (IEEE Conference on Computational Complexity, pp. 116–124, 2000) and Szeider (J. Comput. Syst. Sci. 69(4):656–674, 2004) for MaxSat parameterized by δ (F).

To obtain our main result, we reduce (ν(F)+k)-SAT into the following parameterization of the Hitting Set problem (denoted by (mk)-Hitting Set): given a collection \(\mathcal{C}\) of m subsets of a ground set U of n elements, decide whether there is XU such that CX≠∅ for each \(C\in \mathcal{C}\) and |X|≤mk, where k is the parameter. Gutin, Jones and Yeo (Theor. Comput. Sci. 412(41):5744–5751, 2011) proved that (mk)-Hitting Set is fixed-parameter tractable by obtaining an exponential kernel for the problem. We obtain two algorithms for (mk)-Hitting Set: a deterministic algorithm of runtime \(O((2e)^{2k+O(\log^{2} k)} (m+n)^{O(1)})\) and a randomized algorithm of expected runtime \(O(8^{k+O(\sqrt{k})} (m+n)^{O(1)})\). Our deterministic algorithm improves an algorithm that follows from the kernelization result of Gutin, Jones and Yeo (Theor. Comput. Sci. 412(41):5744–5751, 2011).

Keywords

Bipartite Graph Special Instance Deterministic Algorithm Maximum Match Truth Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was partially supported by an International Joint grant of the Royal Society.

References

  1. 1.
    Aharoni, R., Linial, N.: Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas. J. Comb. Theory, Ser. A 43, 196–204 (1986) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a tight lower bound. Algorithmica 61, 638–655 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bodlaender, H.L., Thomasse, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Crowston, R., Gutin, G., Jones, M., Yeo, A.: A new lower bound on the maximum number of satisfied clauses in Max-SAT and its algorithmic applications. Algorithmica 64, 56–68 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility though colors and IDs. In: Proc. 36th ICALP, Part I. Lect. Notes Comput. Sci., vol. 5555, pp. 378–389 (2009) Google Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999) CrossRefGoogle Scholar
  9. 9.
    Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S., Rao, B.V.R.: Faster algorithms for finding and counting subgraphs. J. Comput. Syst. Sci. 78(3), 698–706 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fleischner, H., Kullmann, O., Szeider, S.: Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference. Theor. Comput. Sci. 289(1), 503–516 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fleischner, H., Szeider, S.: Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 7 (2000) Google Scholar
  12. 12.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006) Google Scholar
  13. 13.
    Gutin, G., Jones, M., Yeo, A.: Kernels for below-upper-bound parameterizations of the hitting set and directed dominating set problems. Theor. Comput. Sci. 412(41), 5744–5751 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gutin, G., Jones, M., Yeo, A.: A new bound for 3-satisfiable MaxSat and its algorithmic application. In: Proc. FCT 2011. Lect. Notes Comput. Sci., vol. 6914, pp. 138–147 (2011) Google Scholar
  15. 15.
    Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 17, 75–115 (1918) CrossRefGoogle Scholar
  16. 16.
    Kleine Büning, H.: On subclasses of minimal unsatisfiable formulas. Discrete Appl. Math. 107(1–3), 83–98 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Handbook of Satisfiability, pp. 339–401 (2009). Chap. 11 Google Scholar
  18. 18.
    Kullmann, O.: An application of matroid theory to the sat problem. In: IEEE Conference on Computational Complexity, pp. 116–124 (2000) CrossRefGoogle Scholar
  19. 19.
    Kullmann, O.: Lean clause-sets: generalizations of minimally unsatisfiable clause-sets. Discrete Appl. Math. 130, 209–249 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Lovász, L., Plummer, M.D.: Matching Theory. AMS/Chelsea, New York (2009) zbMATHGoogle Scholar
  21. 21.
    Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. Comput. Syst. Sci. 75(2), 137–153 (2009). Preliminary version in the 2nd IWPEC, Lect. Notes Comput. Sci. 4169, 38–49 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete Appl. Math. 10, 287–295 (1985) CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006) CrossRefzbMATHGoogle Scholar
  25. 25.
    Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms. Academic Press, San Diego (1978) zbMATHGoogle Scholar
  26. 26.
    Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput. Syst. Sci. 37(1), 2–13 (1988) CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Srinivasan, A.: Improved approximations of packing and covering problems. In: STOC’95, pp. 268–276 (1995) Google Scholar
  28. 28.
    Szeider, S.: Minimal unsatisfiable formulas with bounded clause-variable difference are fixed-parameter tractable. J. Comput. Syst. Sci. 69(4), 656–674 (2004) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Robert Crowston
    • 1
  • Gregory Gutin
    • 1
  • Mark Jones
    • 1
  • Venkatesh Raman
    • 2
  • Saket Saurabh
    • 2
  • Anders Yeo
    • 3
  1. 1.Royal HollowayUniversity of LondonEgham, SurreyUK
  2. 2.The Institute of Mathematical SciencesChennaiIndia
  3. 3.University of JohannesburgJohannesburgSouth Africa

Personalised recommendations