# Speed Scaling on Parallel Processors

- 644 Downloads
- 16 Citations

## Abstract

In this paper we investigate dynamic speed scaling, a technique to reduce energy consumption in variable-speed microprocessors. While prior research has focused mostly on single processor environments, in this paper we investigate multiprocessor settings. We study the basic problem of scheduling a set of jobs, each specified by a release date, a deadline and a processing volume, on variable-speed processors so as to minimize the total energy consumption.

We first settle the problem complexity if unit size jobs have to be scheduled. More specifically, we devise a polynomial time algorithm for jobs with agreeable deadlines and prove NP-hardness results if jobs have arbitrary deadlines. For the latter setting we also develop a polynomial time algorithm achieving a constant factor approximation guarantee. Additionally, we study problem settings where jobs have arbitrary processing requirements and, again, develop constant factor approximation algorithms. We finally transform our offline algorithms into constant competitive online strategies.

## Keywords

Scheduling Dynamic speed scaling Energy efficiency NP-hardness Approximation algorithm Online algorithm## References

- 1.Albers, S.: Energy-efficient algorithms. Commun. ACM
**53**(5), 86–96 (2010) CrossRefMathSciNetGoogle Scholar - 2.Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms
**3**(4), 49 (2007) CrossRefMathSciNetGoogle Scholar - 3.Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic speed scaling to manage energy and temperature. J. ACM
**54**(1), 3 (2007) CrossRefMathSciNetGoogle Scholar - 4.Bansal, N., Chan, H.-L., Lam, T.-W., Lee, K.-L.: Scheduling for speed bounded processors. In: Proc. 35th International Colloquium on Automata, Languages and Programming. LNCS, vol. 5125, pp. 409–420. Springer, Berlin (2008) CrossRefGoogle Scholar
- 5.Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power function. In: Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 693–701 (2009) CrossRefGoogle Scholar
- 6.Bansal, N., Chan, H.-L., Pruhs, K., Katz, D.: Improved bounds for speed scaling in devices obeying the cube-root rule. In: Proc. 36th International Colloqium on Automata, Languages and Programming. LNCS, vol. 5555, pp. 144–155. Springer, Berlin (2009) CrossRefGoogle Scholar
- 7.Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM J. Comput.
**39**(4), 1294–1308 (2009) CrossRefMATHMathSciNetGoogle Scholar - 8.Bansal, N., Bunde, D.P., Chan, H.-L., Pruhs, K.: Average rate speed scaling. Algorithmica
**60**(4), 877–889 (2011) CrossRefMATHMathSciNetGoogle Scholar - 9.Baptiste, P.: Scheduling unit tasks to minimize the number of idle periods: A polynomial time algorithm for offline dynamic power management. In: Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 364–367 (2006) Google Scholar
- 10.Baptiste, P., Chrobak, M., Dürr, C.: Polynomial time algorithms for minimum energy scheduling. In: Proc. 15th Annual European Symposium on Algorithms. LNCS, vol. 4698, pp. 136–150. Springer, Berlin (2007) Google Scholar
- 11.Barroso, L.A.: The price of performance. ACM Queue
**3**(7), 48–53 (2005) CrossRefGoogle Scholar - 12.Bell, P.C., Wong, P.W.H.: Multiprocessor speed scaling for jobs with arbitrary sizes and deadlines. In: Proc. 8th Annual Conference on Theory and Applications of Models of Computation (TAMC). LNCS, vol. 6648, pp. 27–36. Springer, Berlin (2011) Google Scholar
- 13.Bunde, D.P.: Power-aware scheduling for makespan and flow. J. Sched.
**12**, 489–500 (2009) CrossRefMATHMathSciNetGoogle Scholar - 14.Chan, H.-L., Chan, J.W.-T., Lam, T.W., Lee, L.-K., Mak, K.-S., Wong, P.W.H.: Optimizing throughput and energy in online deadline scheduling. ACM Trans. Algorithms
**6**(1), 10 (2009) CrossRefMathSciNetGoogle Scholar - 15.Chen, J.-J., Hsu, H.-R., Chuang, K.-H., Yang, C.-L., Pang, A.-C., Kuo, T.-W.: Multiprocessor energy-efficient scheduling with task migration considerations. In: Proc. 16th Euromicro Conference of Real-Time Systems, pp. 101–108 (2004) Google Scholar
- 16.Chen, J.-J., Kuo, T.-W., Lu, H.-I.: Power-saving scheduling for weakly dynamic voltage scaling devices. In: Proc. 9th International Workshop on Algorithms and Data Structures. LNCS, vol. 3608, pp. 338–349. Springer, Berlin (2005) Google Scholar
- 17.Demaine, E.D., Ghodsi, M., Hajiaghayi, M.T., Sayedi-Roshkhar, A.S., Zadimoghaddam, M.: Scheduling to minimize gaps and power consumption. In: Proc. 19th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 46–54 (2007) Google Scholar
- 18.Garay, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979) Google Scholar
- 19.Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multiprocessor scheduling. In: Proc. 21st Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 11–18 (2009) Google Scholar
- 20.Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling heterogeneous processors isn’t as easy as you think. In: Proc. 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1242–1253 (2012) CrossRefGoogle Scholar
- 21.Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM
**34**, 144–162 (1987) CrossRefMathSciNetGoogle Scholar - 22.
- 23.Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT News
**36**(2), 63–76 (2005) CrossRefGoogle Scholar - 24.Irani, S., Shukla, S., Gupta, R.: Algorithms for power savings. ACM Trans. Algorithms
**3**(4), 41 (2007) CrossRefMathSciNetGoogle Scholar - 25.Lam, T.-W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Energy efficient deadline scheduling in two processor systems. In: Proc. 18th International Symposium on Algorithms and Computation. LNCS, vol. 4835, pp. 476–487. Springer, Berlin (2007) Google Scholar
- 26.Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Nonmigratory multiprocessor scheduling for response time and energy. IEEE Trans. Parallel Distrib. Syst.
**19**(11), 1527–1539 (2008) CrossRefGoogle Scholar - 27.Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Improved multi-processor scheduling for flow time and energy. J. Sched.
**15**(1), 105–116 (2012) CrossRefMathSciNetGoogle Scholar - 28.Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence constraints. Theory Comput. Syst.
**43**(1), 67–80 (2008) CrossRefMATHMathSciNetGoogle Scholar - 29.Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM
**28**, 202–208 (1985) CrossRefMathSciNetGoogle Scholar - 30.Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc. 36th Annual Symposium on Foundations of Computer Science, pp. 374–382 (1995) Google Scholar