, Volume 68, Issue 2, pp 404–425 | Cite as

Speed Scaling on Parallel Processors

  • Susanne Albers
  • Fabian Müller
  • Swen Schmelzer


In this paper we investigate dynamic speed scaling, a technique to reduce energy consumption in variable-speed microprocessors. While prior research has focused mostly on single processor environments, in this paper we investigate multiprocessor settings. We study the basic problem of scheduling a set of jobs, each specified by a release date, a deadline and a processing volume, on variable-speed processors so as to minimize the total energy consumption.

We first settle the problem complexity if unit size jobs have to be scheduled. More specifically, we devise a polynomial time algorithm for jobs with agreeable deadlines and prove NP-hardness results if jobs have arbitrary deadlines. For the latter setting we also develop a polynomial time algorithm achieving a constant factor approximation guarantee. Additionally, we study problem settings where jobs have arbitrary processing requirements and, again, develop constant factor approximation algorithms. We finally transform our offline algorithms into constant competitive online strategies.


Scheduling Dynamic speed scaling Energy efficiency NP-hardness Approximation algorithm Online algorithm 


  1. 1.
    Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms 3(4), 49 (2007) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic speed scaling to manage energy and temperature. J. ACM 54(1), 3 (2007) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bansal, N., Chan, H.-L., Lam, T.-W., Lee, K.-L.: Scheduling for speed bounded processors. In: Proc. 35th International Colloquium on Automata, Languages and Programming. LNCS, vol. 5125, pp. 409–420. Springer, Berlin (2008) CrossRefGoogle Scholar
  5. 5.
    Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power function. In: Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 693–701 (2009) CrossRefGoogle Scholar
  6. 6.
    Bansal, N., Chan, H.-L., Pruhs, K., Katz, D.: Improved bounds for speed scaling in devices obeying the cube-root rule. In: Proc. 36th International Colloqium on Automata, Languages and Programming. LNCS, vol. 5555, pp. 144–155. Springer, Berlin (2009) CrossRefGoogle Scholar
  7. 7.
    Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM J. Comput. 39(4), 1294–1308 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bansal, N., Bunde, D.P., Chan, H.-L., Pruhs, K.: Average rate speed scaling. Algorithmica 60(4), 877–889 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Baptiste, P.: Scheduling unit tasks to minimize the number of idle periods: A polynomial time algorithm for offline dynamic power management. In: Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 364–367 (2006) Google Scholar
  10. 10.
    Baptiste, P., Chrobak, M., Dürr, C.: Polynomial time algorithms for minimum energy scheduling. In: Proc. 15th Annual European Symposium on Algorithms. LNCS, vol. 4698, pp. 136–150. Springer, Berlin (2007) Google Scholar
  11. 11.
    Barroso, L.A.: The price of performance. ACM Queue 3(7), 48–53 (2005) CrossRefGoogle Scholar
  12. 12.
    Bell, P.C., Wong, P.W.H.: Multiprocessor speed scaling for jobs with arbitrary sizes and deadlines. In: Proc. 8th Annual Conference on Theory and Applications of Models of Computation (TAMC). LNCS, vol. 6648, pp. 27–36. Springer, Berlin (2011) Google Scholar
  13. 13.
    Bunde, D.P.: Power-aware scheduling for makespan and flow. J. Sched. 12, 489–500 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Chan, H.-L., Chan, J.W.-T., Lam, T.W., Lee, L.-K., Mak, K.-S., Wong, P.W.H.: Optimizing throughput and energy in online deadline scheduling. ACM Trans. Algorithms 6(1), 10 (2009) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Chen, J.-J., Hsu, H.-R., Chuang, K.-H., Yang, C.-L., Pang, A.-C., Kuo, T.-W.: Multiprocessor energy-efficient scheduling with task migration considerations. In: Proc. 16th Euromicro Conference of Real-Time Systems, pp. 101–108 (2004) Google Scholar
  16. 16.
    Chen, J.-J., Kuo, T.-W., Lu, H.-I.: Power-saving scheduling for weakly dynamic voltage scaling devices. In: Proc. 9th International Workshop on Algorithms and Data Structures. LNCS, vol. 3608, pp. 338–349. Springer, Berlin (2005) Google Scholar
  17. 17.
    Demaine, E.D., Ghodsi, M., Hajiaghayi, M.T., Sayedi-Roshkhar, A.S., Zadimoghaddam, M.: Scheduling to minimize gaps and power consumption. In: Proc. 19th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 46–54 (2007) Google Scholar
  18. 18.
    Garay, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979) Google Scholar
  19. 19.
    Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multiprocessor scheduling. In: Proc. 21st Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 11–18 (2009) Google Scholar
  20. 20.
    Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling heterogeneous processors isn’t as easy as you think. In: Proc. 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1242–1253 (2012) CrossRefGoogle Scholar
  21. 21.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34, 144–162 (1987) CrossRefMathSciNetGoogle Scholar
  22. 22.
  23. 23.
    Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT News 36(2), 63–76 (2005) CrossRefGoogle Scholar
  24. 24.
    Irani, S., Shukla, S., Gupta, R.: Algorithms for power savings. ACM Trans. Algorithms 3(4), 41 (2007) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Lam, T.-W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Energy efficient deadline scheduling in two processor systems. In: Proc. 18th International Symposium on Algorithms and Computation. LNCS, vol. 4835, pp. 476–487. Springer, Berlin (2007) Google Scholar
  26. 26.
    Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Nonmigratory multiprocessor scheduling for response time and energy. IEEE Trans. Parallel Distrib. Syst. 19(11), 1527–1539 (2008) CrossRefGoogle Scholar
  27. 27.
    Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Improved multi-processor scheduling for flow time and energy. J. Sched. 15(1), 105–116 (2012) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence constraints. Theory Comput. Syst. 43(1), 67–80 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28, 202–208 (1985) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc. 36th Annual Symposium on Foundations of Computer Science, pp. 374–382 (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Susanne Albers
    • 1
  • Fabian Müller
    • 2
  • Swen Schmelzer
    • 2
  1. 1.Department of Computer ScienceHumboldt Universität zu BerlinBerlinGermany
  2. 2.Department of Computer ScienceUniversity of FreiburgFreiburgGermany

Personalised recommendations