, Volume 64, Issue 3, pp 511–533 | Cite as

From Holant to #CSP and Back: Dichotomy for Holant c Problems

  • Jin-Yi Cai
  • Sangxia HuangEmail author
  • Pinyan Lu


We explore the intricate interdependent relationship among counting problems, considered from three frameworks for such problems: Holant Problems, counting CSP and weighted H-colorings. We consider these problems for general complex valued functions that take boolean inputs. We show that results from one framework can be used to derive results in another, and this happens in both directions. Holographic reductions discover an underlying unity, which is only revealed when these counting problems are investigated in the complex domain ℂ. We prove three complexity dichotomy theorems, leading to a general theorem for Holant c problems. This is the natural class of Holant problems where one can assign constants 0 or 1. More specifically, given any signature grid on G=(V,E) over a set Open image in new window of symmetric functions, we completely classify the complexity to be in P or #P-hard, according to  Open image in new window , of
$$\sum_{\sigma: E \rightarrow \{0,1\}}\prod_{v\in V} f_v(\sigma \vert _{E(v)}),$$
where Open image in new window (0, 1 are the unary constant 0, 1 functions). Not only is holographic reduction the main tool, but also the final dichotomy can be only naturally stated in the language of holographic transformations. The proof goes through another dichotomy theorem on Boolean complex weighted #CSP.


Holant problem #CSP Holographic reduction Dichotomy 


  1. 1.
    Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53, 66–120 (2006) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) Proceedings of 35th International Colloquium on Automata, Languages and Programming, ICALP 2008, Part I: Track A: Algorithms, Automata, Complexity, and Games, Reykjavik, Iceland, July 7–11, 2008. Lecture Notes in Computer Science, vol. 5125, pp. 646–661. Springer, Berlin (2008) Google Scholar
  3. 3.
    Bulatov, A.A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satisfaction problem. Inf. Comput. 205(5), 651–678 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bulatov, A.A., Grohe, M.: The complexity of partition functions. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) Proceedings of 31st International Colloquium on Automata, Languages and Programming: ICALP 2004, Turku, Finland, July 12–16, 2004. Lecture Notes in Computer Science, vol. 3142, pp. 294–306. Springer, Berlin (2004) CrossRefGoogle Scholar
  5. 5.
    Bulatov, A.A., Grohe, M.: The complexity of partition functions. Theor. Comput. Sci. 348(2–3), 148–186 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cai, J.y., Chen, X., Lu, P.: Graph homomorphisms with complex values: A dichotomy theorem. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.): Proceedings of 37th International Colloquium on Automata, Languages and Programming, Part I, ICALP 2010, Bordeaux, France, July 6–10, 2010. Lecture Notes in Computer Science, vol. 6198, pp. 275–286. Springer, Berlin (2010) Google Scholar
  7. 7.
    Cai, J.y., Lu, P.: Holographic algorithms: From art to science. J. Comput. Syst. Sci. 77(1), 41–61 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cai, J.y., Lu, P., Xia, M.: Holographic algorithms by Fibonacci gates and holographic reductions for hardness. In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, Philadelphia, PA, USA, October 25–28, 2008, pp. 644–653. IEEE Computer Society, Los Alamitos (2008) CrossRefGoogle Scholar
  9. 9.
    Cai, J.Y., Lu, P., Xia, M.: Holant problems and counting CSP. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31–June 2, 2009, pp. 715–724. ACM, New York (2009) CrossRefGoogle Scholar
  10. 10.
    Cai, J.y., Lu, P., Xia, M.: A computational proof of complexity of some restricted counting problems. Theor. Comput. Sci. 412(23), 2468–2485 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. Society for Industrial and Applied Mathematics, Philadelphia (2001) zbMATHCrossRefGoogle Scholar
  12. 12.
    Dodson, C.T.J., Poston, T.: Tensor Geometry: the Geometric Viewpoint and Its Uses. Graduate Texts in Mathematics. Springer, Berlin (1991) zbMATHGoogle Scholar
  13. 13.
    Dyer, M.E., Goldberg, L.A., Jerrum, M.: The complexity of weighted Boolean CSP. SIAM J. Comput. 38(5), 1970–1986 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Dyer, M.E., Goldberg, L.A., Paterson, M.: On counting homomorphisms to directed acyclic graphs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) Proceedings of 33rd International Colloquium, on Automata, Languages and Programming, Part I, ICALP 2006, Venice, Italy, July 10–14, 2006. Lecture Notes in Computer Science, vol. 4051, pp. 38–49. Springer, Berlin (2006) Google Scholar
  15. 15.
    Dyer, M.E., Goldberg, L.A., Paterson, M.: On counting homomorphisms to directed acyclic graphs. J. ACM 54(6) (2007) Google Scholar
  16. 16.
    Dyer, M.E., Greenhill, C.S.: The complexity of counting graph homomorphisms (extended abstract). In: Shmoys, David B. (ed.) Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA, January 9–11, 2000, pp. 246–255. ACM/SIAM, New York (2000) Google Scholar
  17. 17.
    Dyer, M.E., Greenhill, C.S.: Corrigendum: The complexity of counting graph homomorphisms. Random Struct. Algorithms 25(3), 346–352 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity, and homomorphism of graphs. J. Am. Math. Soc. 20, 37–51 (2007) zbMATHCrossRefGoogle Scholar
  20. 20.
    Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for partition functions with mixed signs. SIAM J. Comput. 39(7), 3336–3402 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hell, P., Nešetřil, J.: On the complexity of h-coloring. J. Comb. Theory, Ser. B 48(1), 92–110 (1990) zbMATHCrossRefGoogle Scholar
  22. 22.
    Kowalczyk, M.: Classification of a class of counting problems using holographic reductions. In: Ngo, Hung Q. (ed.) Proceedings of 15th Annual International Conference on Computing and Combinatorics, COCOON 2009, Niagara Falls, NY, USA, July 13–15, 2009. Lecture Notes in Computer Science, vol. 5609, pp. 472–485. Springer, Berlin (2009) Google Scholar
  23. 23.
    Kowalczyk, M., Cai, J.y.: Holant problems for regular graphs with complex edge functions. In: Marion, J.-Y., Schwentick, T. (eds.) 27th International Symposium on Theoretical Aspects of Computer Science, STACS 2010, Nancy, France, March 4–6, 2010, LIPIcs, vol. 5, pp. 525–536. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Dagstuhl (2010) Google Scholar
  24. 24.
    Valiant, L.G.: Accidental algorithms. In: Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), Berkeley, California, USA, 21–24 October 2006, pp. 509–517. IEEE Comput. Soc., Los Alamitos (2006) CrossRefGoogle Scholar
  25. 25.
    Valiant, L.G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Xia, M., Zhang, P., Zhao, W.: Computational complexity of counting problems on 3-regular planar graphs. Theor. Comput. Sci. 384(1), 111–125 (2007) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.University of Wisconsin-MadisonMadisonUSA
  2. 2.KTH Royal Institute of TechnologyStockholmSweden
  3. 3.Microsoft Research AsiaMinhang District ShanghaiChina

Personalised recommendations