, Volume 65, Issue 3, pp 562–583 | Cite as

Computing Without Communicating: Ring Exploration by Asynchronous Oblivious Robots

  • Paola Flocchini
  • David Ilcinkas
  • Andrzej Pelc
  • Nicola Santoro


We consider the problem of exploring an anonymous unoriented ring by a team of k identical, oblivious, asynchronous mobile robots that can view the environment but cannot communicate. This weak scenario is standard when the spatial universe in which the robots operate is the two-dimensional plane, but (with one exception) has not been investigated before for networks. Our results imply that, although these weak capabilities of robots render the problem considerably more difficult, ring exploration by a small team of robots is still possible.

We first show that, when k and n are not co-prime, the problem is not solvable in general, e.g., if k divides n there are initial placements of the robots for which gathering is impossible. We then prove that the problem is always solvable provided that n and k are co-prime, for k≥17, by giving an exploration algorithm that always terminates, starting from arbitrary initial configurations. Finally, we consider the minimum number ρ(n) of robots that can explore a ring of size n. As a consequence of our positive result we show that ρ(n) is O(logn). We additionally prove that Ω(logn) robots are necessary for infinitely many n.


Mobile robots Asynchronous Oblivious Exploration Ring 


  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36, 56–82 (2006) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29, 1164–1188 (2000) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ambühl, C., Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. ACM Trans. Algorithms 7, article 17 (2011) CrossRefGoogle Scholar
  4. 4.
    Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing of two traveling salesmen on a tree. Discrete Appl. Math. 68, 17–32 (1996) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Averbakh, I., Berman, O.: (p−1)/(p+1)-approximate algorithms for p-traveling salesmen problems on a tree with minmax objective. Discrete Appl. Math. 75, 201–216 (1997) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph learning by a mobile robot. In: Proceedings of the 8th Annual Conference on Computational Learning Theory (COLT 1995), pp. 321–328 (1995) CrossRefGoogle Scholar
  7. 7.
    Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. In: Proceedings of the 30th Annual ACM Symposium on the Theory of Computing (STOC 1998), pp. 269–278 (1998) Google Scholar
  8. 8.
    Bender, M.A., Slonim, D.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 75–85 (1994) CrossRefGoogle Scholar
  9. 9.
    Betke, M., Rivest, R., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18, 231–254 (1995) Google Scholar
  10. 10.
    Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent and oblivious robots. In: Proceedings of the 36th Int. Workshop on Graph Theoretic Concepts in Computer Science (WG 2010). LNCS, vol. 6410, pp. 208–219. Springer, Berlin (2010) Google Scholar
  11. 11.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Proceedings of the 30th International Colloquium on Automata, Languages and Programming (ICALP 2003). LNCS, vol. 2719, pp. 1181–1196. Springer, Berlin (2003) CrossRefGoogle Scholar
  12. 12.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Proceedings of the 11th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2004). LNCS, vol. 3104, pp. 79–88. Springer, Berlin (2004) CrossRefGoogle Scholar
  14. 14.
    Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a network using multiple agents. In: Proceedings of the 10th International Conference on Principles of Distributed Systems (OPODIS 2006). LNCS, vol. 4288, pp. 320–332. Springer, Berlin (2006) Google Scholar
  15. 15.
    Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410, 481–499 (2009) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Searching for a black hole in synchronous tree networks. Comb. Probab. Comput. 16, 595–619 (2007) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of unknown graphs by multiple agents. Theor. Comput. Sci. 385, 34–48 (2007) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theor. Comput. Sci. 396, 97–112 (2008) MATHCrossRefGoogle Scholar
  19. 19.
    Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32, 265–297 (1999) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theor. Comput. Sci. 326, 343–362 (2004) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Devismes, S.: Optimal exploration of small rings. In: Proceedings of the 3rd International ACM SIGOPS/SIGACT Workshop on Reliability, Availability, and Security (WRAS 2010), pp. 9:1–9:6 (2010) Google Scholar
  22. 22.
    Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-synchronous oblivious robots. In: Proceedings of the 16th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2009). LNCS, vol. 5869, pp. 195–208. Springer, Berlin (2009) CrossRefGoogle Scholar
  23. 23.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51, 38–63 (2004) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), pp. 807–814 (2001) Google Scholar
  25. 25.
    Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Proceedings of the 13th European Symposium on Algorithms (ESA 2005). LNCS, vol. 3669, pp. 11–22. Springer, Berlin (2005) Google Scholar
  26. 26.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: tree exploration by asynchronous oblivious robots. Theor. Comput. Sci. 411, 1544–1557 (2010) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: ring exploration by asynchronous oblivious robots. In: Proceedings of the 11th International Conference on Principles of Distributed Systems (OPODIS 2007). LNCS, vol. 4878, pp. 105–118. Springer, Berlin (2007) Google Scholar
  28. 28.
    Flocchini, P., Ilcinkas, D., Santoro, N.: Ping-Pong in dangerous graphs: Optimal black hole search with pure tokens. Algorithmica (2011, in press) Google Scholar
  29. 29.
    Flocchini, P., Prencipe, G., Santoro, N.: Computing by mobile robotic sensors. Chap. 3 of [37] (2011) Google Scholar
  30. 30.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407, 412–447 (2008) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48, 166–177 (2006) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. Comput. 7, 178–193 (1978) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gathering from symmetric configurations without global multiplicity detection. In: Proceedings of the 18th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2011). LNCS, vol. 6796, pp. 150–161. Springer, Berlin (2011) CrossRefGoogle Scholar
  34. 34.
    Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411, 3235–3246 (2010) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390, 27–39 (2008) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Lamani, A., Gradinariu Potop-Butucaru, M., Tixeuil, S.: Optimal deterministic ring exploration with oblivious asynchronous robots. In: Proceedings of the 17th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2010). LNCS, vol. 6058, pp. 183–196. Springer, Berlin (2010) CrossRefGoogle Scholar
  37. 37.
    Nikoletseas, S., Rolim, J. (eds.): Theoretical Aspects of Distributed Computing in Sensor Networks. Springer, Berlin (2011) MATHGoogle Scholar
  38. 38.
    Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33, 281–295 (1999) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384, 222–231 (2007) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Ruiz, S.M.: A result on prime numbers. Math. Gaz. 81, 269 (1997) CrossRefGoogle Scholar
  41. 41.
    Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. In: Proceedings of the 10th International Conference on Principles of Distributed Systems (OPODIS 2006). LNCS, vol. 4305, pp. 333–349. Springer, Berlin (2006) Google Scholar
  42. 42.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28, 1347–1363 (1999) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Paola Flocchini
    • 1
  • David Ilcinkas
    • 2
  • Andrzej Pelc
    • 3
  • Nicola Santoro
    • 4
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada
  2. 2.LaBRICNRS & Université de BordeauxTalence cedexFrance
  3. 3.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada
  4. 4.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations